OFFSET
1,2
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (14, -91, 364, -1001, 2002, -3003, 3432, -3003, 2002, -1001, 364, -91, 14, -1).
FORMULA
G.f.: x*(x^10 +716*x^9 +37257*x^8 +450048*x^7 +1822014*x^6 +2864328*x^5 +1822014*x^4 +450048*x^3 +37257*x^2 +716*x +1) / (x -1)^14. - Colin Barker, May 02 2014
a(n) = (n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12). - G. C. Greubel, Nov 22 2017
EXAMPLE
a(5) = C(7,3)*[191*106 + 450*(18*C(14,10) + 3851*C(13,10) + 61839*C(12,10) + 225352*C(11,10) + 225352*C(10,10))]/10010 = 12438011.
MAPLE
f:= sum(binomial(1+i, 2)^6, i=1..n):
seq(f, n=1..30); # Robert Israel, Nov 22 2017
MATHEMATICA
Table[Sum[Binomial[i+1, 2]^6, {i, n}], {n, 20}] (* or *) LinearRecurrence[ {14, -91, 364, -1001, 2002, -3003, 3432, -3003, 2002, -1001, 364, -91, 14, -1}, {1, 730, 47386, 1047386, 12438011, 98204132, 580094436, 2756876772, 11060642397, 38741283022, 121395233038, 346594833742, 914464085783, 2254559726408}, 20] (* Harvey P. Dale, Jun 05 2017 *)
PROG
(PARI) for(n=1, 30, print1(sum(k=1, n, binomial(k+1, 2)^6), ", ")) \\ G. C. Greubel, Nov 22 2017
(Magma) [(n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
André F. Labossière, Jul 07 2003
STATUS
approved