This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024166 a(n) = Sum_{1 <= i < j <= n} (j-i)^3. 50
 0, 1, 10, 46, 146, 371, 812, 1596, 2892, 4917, 7942, 12298, 18382, 26663, 37688, 52088, 70584, 93993, 123234, 159334, 203434, 256795, 320804, 396980, 486980, 592605, 715806, 858690, 1023526, 1212751, 1428976, 1674992, 1953776, 2268497, 2622522, 3019422 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Convolution of the cubes (A000578) with the positive integers a(n)=n+1, where all sequences have offset zero. - Graeme McRae, Jun 06 2006 a(A004772(n)) mod 2 = 0; a(A016813(n)) mod 2 = 1. - Reinhard Zumkeller, Oct 14 2001 Partial sums of A000537. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004 a(n) gives the n-th antidiagonal sum of the convolution array A212891. - Clark Kimberling, Jun 16 2012 In general, the r-th successive summation of the cubes from 1 to n is (6*n^2 + 6*n*r + r^2 - r)*(n+r)!/((r+3)!*(n-1)!), n>0. Here r = 2. - Gary Detlefs, Mar 01 2013 REFERENCES Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 1. - N. J. A. Sloane, Mar 23 2014 C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7 Alexander R. Povolotsky, Problem 1147, Pi Mu Epsilon Fall 2006 Problems. Alexander R. Povolotsky, Problem, Pi Mu Epsilon Spring 2007 Problems. Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1) FORMULA From Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999: (Start) a(n) = Sum_{i=0..n} (A000217(i))^2. a(n) = n*(n+1)*(n+2)*(3*n^2 + 6*n + 1)/60. (End) a(n) = Sum_{k=0..n} k^3*(n+1-k). - Paul Barry, Sep 14 2003; edited by Jon E. Schoenfield, Dec 29 2014 a(n) = Sum_{i=1..n} binomial(i+1, 2)^2. - André F. Labossière, Jul 03 2003 a(n) = 2*n*(n+1)*(n+2)*((n+1)^2 + 2*n*(n+2))/5!. This sequence could be obtained from the general formula a(n) = n*(n+1)*(n+2)*(n+3)* ...* (n+k) *(n*(n+k) + (k-1)*k/6)/((k+3)!/6) at k=2. - Alexander R. Povolotsky, May 17 2008 O.g.f.: x*(1 + 4*x + x^2)/(-1 + x)^6 . - R. J. Mathar, Jun 06 2008 a(n) = (6*n^2 + 12*n + 2)*(n+2)!/(120*(n-1)!), n > 0. - Gary Detlefs, Mar 01 2013 a(n) = A222716(n+1)/10 = A000292(n)*A100536(n+1)/10. - Jonathan Sondow, Mar 04 2013 4*a(n) = Sum_{i=0..n} A000290(i)*A000290(i+1). - Bruno Berselli, Feb 05 2014 a(n) = Sum_{i=1..n} Sum_{j=1..n} i*j*(n - max(i, j) + 1) - Melvin Peralta, May 12 2016 a(n) = n*binomial(n+3, 4) + binomial(n+2, 5). - Tony Foster III, Nov 14 2017 EXAMPLE 4*a(7) = 6384 = (0*1)^2 + (1*2)^2 + (2*3)^2 + (3*4)^2 + (4*5)^2 + (5*6)^2 + (6*7)^2 + (7*8)^2. - Bruno Berselli, Feb 05 2014 MAPLE A024166:=n->n*(n+1)*(n+2)*(3*n^2 + 6*n + 1)/60: seq(A024166(n), n=0..50); # Wesley Ivan Hurt, Nov 21 2017 MATHEMATICA Nest[Accumulate, Range[0, 40]^3, 2] (* Harvey P. Dale, Jan 10 2016 *) Table[n*(n+1)*(n+2)*(3*n^2 + 6*n + 1)/60, {n, 0, 30}] (* G. C. Greubel, Nov 21 2017 *) PROG (PARI) a(n)=sum(j=1, n, sum(m=1, j, sum(i=m*(m+1)/2-m+1, m*(m+1)/2, (2*i-1)))) \\ Alexander R. Povolotsky, May 17 2008 (Haskell) a024166 n = sum \$ zipWith (*) [n+1, n..0] a000578_list -- Reinhard Zumkeller, Oct 14 2001 (MAGMA) [n*(n+1)*(n+2)*(3*n^2 + 6*n + 1)/60: n in [0..30]]; // G. C. Greubel, Nov 21 2017 (PARI) for(n=0, 30, print1(n*(n+1)*(n+2)*(3*n^2 + 6*n + 1)/60, ", ")) \\ G. C. Greubel, Nov 21 2017 CROSSREFS Cf. A000292, A000332, A000389, A000579, A000580, A024166, A027555, A085438, A085439, A085440, A085441, A085442, A086020, A086021, A086022, A086023, A086024, A086025, A086026, A086027, A086028, A086029, A086030, A087127. Cf. A000330, A000537, A001286, A003215, A100536, A101094, A101097, A101102, A222716. Sequence in context: A241084 A106600 A085437 * A103501 A219003 A003197 Adjacent sequences:  A024163 A024164 A024165 * A024167 A024168 A024169 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 10:17 EDT 2019. Contains 326149 sequences. (Running on oeis4.)