OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
John Engbers and Christopher Stocker, Two Combinatorial Proofs of Identities Involving Sums of Powers of Binomial Coefficients, Integers 16 (2016), #A58.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = ( C(n+4,5)/126 )*( 126 +420*C(n-1,1) +540*C(n-1,2) +315*C(n-1,3) +70*C(n-1,4) ).
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(35*n^4 +280*n^3 +685*n^2 +500*n +12 )/181440. - Bruno Berselli, Sep 05 2013
G.f.: x*(x^4+16*x^3+36*x^2+16*x+1) / (x-1)^10. - Colin Barker, May 02 2014
MATHEMATICA
Table[n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(35*n^4 + 280*n^3 + 685*n^2 + 500*n + 12)/181440, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
Accumulate[Binomial[Range[30]+3, 4]^2] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 26, 251, 1476, 6376, 22252, 66352, 175252, 420277, 931502}, 30] (* Harvey P. Dale, May 06 2018 *)
PROG
(PARI) a(n) = sum(i=1, n, binomial(i+3, 4)^2); \\ Michel Marcus, Sep 05 2013
(PARI) Vec(x*(x^4+16*x^3+36*x^2+16*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(35*n^4 +280*n^3 +685*n^2 +500*n +12 )/181440: n in [1..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
André F. Labossière, Jul 11 2003
EXTENSIONS
More terms from Michel Marcus, Sep 05 2013
STATUS
approved