login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086023
a(n) = Sum_{i=1..n} C(i+3,4)^2.
22
1, 26, 251, 1476, 6376, 22252, 66352, 175252, 420277, 931502, 1933503, 3796728, 7109128, 12773528, 22137128, 37160504, 60634529, 96454754, 149963979, 228375004, 341286880, 501309380, 724811880, 1032814380, 1452040005, 2016150006, 2767184031, 3757230256
OFFSET
1,2
LINKS
John Engbers and Christopher Stocker, Two Combinatorial Proofs of Identities Involving Sums of Powers of Binomial Coefficients, Integers 16 (2016), #A58.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = ( C(n+4,5)/126 )*( 126 +420*C(n-1,1) +540*C(n-1,2) +315*C(n-1,3) +70*C(n-1,4) ).
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(35*n^4 +280*n^3 +685*n^2 +500*n +12 )/181440. - Bruno Berselli, Sep 05 2013
G.f.: x*(x^4+16*x^3+36*x^2+16*x+1) / (x-1)^10. - Colin Barker, May 02 2014
MATHEMATICA
Table[n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(35*n^4 + 280*n^3 + 685*n^2 + 500*n + 12)/181440, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
Accumulate[Binomial[Range[30]+3, 4]^2] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 26, 251, 1476, 6376, 22252, 66352, 175252, 420277, 931502}, 30] (* Harvey P. Dale, May 06 2018 *)
PROG
(PARI) a(n) = sum(i=1, n, binomial(i+3, 4)^2); \\ Michel Marcus, Sep 05 2013
(PARI) Vec(x*(x^4+16*x^3+36*x^2+16*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(35*n^4 +280*n^3 +685*n^2 +500*n +12 )/181440: n in [1..30]]; // G. C. Greubel, Nov 22 2017
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Sep 05 2013
STATUS
approved