login
A085442
a(n) = Sum_{i=1..n} binomial(i+1,2)^7.
25
1, 2188, 282124, 10282124, 181141499, 1982230040, 15475158552, 93839322648, 467508775773, 1989944010148, 7445104711204, 25010673566116, 76686775501847, 217396817767472, 575714897767472, 1436257466526768, 3398894618986905, 7674255436599996, 16612972826599996
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
a(n) = (1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568). - Vladeta Jovovic, Jul 07 2003
G.f.: x*(x^12 +2172*x^11 +247236*x^10 +6030140*x^9 +49258935*x^8 +163809288*x^7 +242384856*x^6 +163809288*x^5 +49258935*x^4 +6030140*x^3 +247236*x^2 +2172*x+ 1) / (x -1)^16. - Colin Barker, May 02 2014
MATHEMATICA
Table[Sum[Binomial[k+1, 2]^7, {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Nov 22 2017 *)
LinearRecurrence[{16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1}, {1, 2188, 282124, 10282124, 181141499, 1982230040, 15475158552, 93839322648, 467508775773, 1989944010148, 7445104711204, 25010673566116, 76686775501847, 217396817767472, 575714897767472, 1436257466526768}, 20] (* Harvey P. Dale, May 11 2022 *)
PROG
(PARI) for(n=1, 30, print1(sum(k=1, n, binomial(k+1, 2)^7), ", ")) \\ G. C. Greubel, Nov 22 2017
(Magma) [(1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568): n in [1..30]]; // G. C. Greubel, Nov 22 2017
KEYWORD
easy,nonn
AUTHOR
STATUS
approved