|
|
A086030
|
|
a(n) = Sum_{i=1..n} C(i+6,7)^3.
|
|
23
|
|
|
1, 513, 47169, 1775169, 37712169, 534505257, 5587534953, 46011772521, 312480135396, 1809674119396, 9165388162788, 41395684407012, 169328324418084, 635173167426084, 2207399512578084, 7167715400927268, 21902130296812161, 63361228916945025, 174437774859945025
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = C(n+7,8)*(5*C(n+13,14) + 210*C(n+12,14) + 1491*C(n+11,14) + 2828*C(n+10,14) + 1491*C(n+9,14) + 210*C(n+8,14) + 5*C(n+7,14))/5. - Yahia Kahloune, Dec 22 2013
-(n-1)^3*a(n) +(2*n+5)*(n^2+5*n+43)*a(n-1) -(n+6)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
G.f.: -x*(x^14 + 490*x^13 + 35623*x^12 + 818300*x^11 + 7917371*x^10 + 37215794*x^9 + 91789005*x^8 + 123519792*x^7 + 91789005*x^6 + 37215794*x^5 + 7917371*x^4 + 818300*x^3 + 35623*x^2 + 490*x + 1)/(x-1)^23. - Vaclav Kotesovec, Dec 23 2013
a(n) = (1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6). - G. C. Greubel, Nov 22 2017
|
|
EXAMPLE
|
a(3) = Sum_{i=1..3} C(6+i,7)^3 = C(10,8)*(5*C(16,14) + 210*C(15,14) + 1491*C(14,14))/5 = 47169.
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[Sum[Binomial[i + 6, 7]^3, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
|
|
PROG
|
(PARI) a(n) = sum(i=1, n, binomial(i+6, 7)^3); \\ Michel Marcus, Dec 22 2013
(Magma) [(1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6): n in [1..30]]; // G. C. Greubel, Nov 22 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|