login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086030
a(n) = Sum_{i=1..n} C(i+6,7)^3.
23
1, 513, 47169, 1775169, 37712169, 534505257, 5587534953, 46011772521, 312480135396, 1809674119396, 9165388162788, 41395684407012, 169328324418084, 635173167426084, 2207399512578084, 7167715400927268, 21902130296812161, 63361228916945025, 174437774859945025
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
FORMULA
a(n) = C(n+7,8)*(5*C(n+13,14) + 210*C(n+12,14) + 1491*C(n+11,14) + 2828*C(n+10,14) + 1491*C(n+9,14) + 210*C(n+8,14) + 5*C(n+7,14))/5. - Yahia Kahloune, Dec 22 2013
-(n-1)^3*a(n) +(2*n+5)*(n^2+5*n+43)*a(n-1) -(n+6)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
G.f.: -x*(x^14 + 490*x^13 + 35623*x^12 + 818300*x^11 + 7917371*x^10 + 37215794*x^9 + 91789005*x^8 + 123519792*x^7 + 91789005*x^6 + 37215794*x^5 + 7917371*x^4 + 818300*x^3 + 35623*x^2 + 490*x + 1)/(x-1)^23. - Vaclav Kotesovec, Dec 23 2013
a(n) = (1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6). - G. C. Greubel, Nov 22 2017
EXAMPLE
a(3) = Sum_{i=1..3} C(6+i,7)^3 = C(10,8)*(5*C(16,14) + 210*C(15,14) + 1491*C(14,14))/5 = 47169.
MAPLE
A086030:=n->add(binomial(i+6, 7)^3, i=1..n); seq(A086030(n), n=1..30); # Wesley Ivan Hurt, Dec 22 2013
MATHEMATICA
Table[Sum[Binomial[i + 6, 7]^3, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
PROG
(PARI) a(n) = sum(i=1, n, binomial(i+6, 7)^3); \\ Michel Marcus, Dec 22 2013
(Magma) [(1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6): n in [1..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved