login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A086030
a(n) = Sum_{i=1..n} C(i+6,7)^3.
23
1, 513, 47169, 1775169, 37712169, 534505257, 5587534953, 46011772521, 312480135396, 1809674119396, 9165388162788, 41395684407012, 169328324418084, 635173167426084, 2207399512578084, 7167715400927268, 21902130296812161, 63361228916945025, 174437774859945025
OFFSET
1,2
LINKS
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
FORMULA
a(n) = C(n+7,8)*(5*C(n+13,14) + 210*C(n+12,14) + 1491*C(n+11,14) + 2828*C(n+10,14) + 1491*C(n+9,14) + 210*C(n+8,14) + 5*C(n+7,14))/5. - Yahia Kahloune, Dec 22 2013
-(n-1)^3*a(n) +(2*n+5)*(n^2+5*n+43)*a(n-1) -(n+6)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
G.f.: -x*(x^14 + 490*x^13 + 35623*x^12 + 818300*x^11 + 7917371*x^10 + 37215794*x^9 + 91789005*x^8 + 123519792*x^7 + 91789005*x^6 + 37215794*x^5 + 7917371*x^4 + 818300*x^3 + 35623*x^2 + 490*x + 1)/(x-1)^23. - Vaclav Kotesovec, Dec 23 2013
a(n) = (1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6). - G. C. Greubel, Nov 22 2017
EXAMPLE
a(3) = Sum_{i=1..3} C(6+i,7)^3 = C(10,8)*(5*C(16,14) + 210*C(15,14) + 1491*C(14,14))/5 = 47169.
MAPLE
A086030:=n->add(binomial(i+6, 7)^3, i=1..n); seq(A086030(n), n=1..30); # Wesley Ivan Hurt, Dec 22 2013
MATHEMATICA
Table[Sum[Binomial[i + 6, 7]^3, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
PROG
(PARI) a(n) = sum(i=1, n, binomial(i+6, 7)^3); \\ Michel Marcus, Dec 22 2013
(Magma) [(1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6): n in [1..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
STATUS
approved