The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086028 a(n) = Sum_{i=1..n} C(i+5,6)^3. 20
 1, 344, 22296, 615000, 9876000, 108487128, 897376152, 5950405848, 33031486875, 158406862000, 671944398512, 2567519091888, 8965083682032, 28938181326000, 87168786702000, 246953567853744, 662331582918141, 1691011474896264, 4129363811437000, 9684000822437000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1). FORMULA -(n-1)^3*a(n) +2*(n+2)*(n^2 +4*n +31)*a(n-1) -(n+5)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013 From Yahia Kahloune, Dec 23 2013; (Start) a(n) = C(n+6,7)*[-15*F6(n) +63063*(7*C(n+11,12) + 195*C(n+10,12) + *920*C(n+9,12) + 920*C(n+8,12) + 195*C(n+7,12) +7*C(n+6,12))]/415701; where F6(n) is Sum_(i=1..6)(-1)^i*C(6+i,i)*C(n+6,i) = C(6,0)*C(n+6,0) - C(7,1)*C(n+6,1) + C(8,2)*C(n+6,2) - C(9,3)*C(n+6,3) + C(10,4)*C(n+6,4) - C(11,5)*C(n+6,5) + C(12,6)*C(n+6,6). The values of F6(n), (n=0...9) are: 1, 1716, 10725, 39754, 112827, 270348, 575107, 1119210, 2031933, 3488500, .... (End) G.f.: x*(x^12 +324*x^11 +15606*x^10 +233300*x^9 +1424925*x^8 +4050864*x^7 +5703096*x^6 +4050864*x^5 +1424925*x^4 +233300*x^3 +15606*x^2 +324*x +1) / (x -1)^20. - Colin Barker, May 02 2014 a(n) = (n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12). - G. C. Greubel, Nov 22 2017 EXAMPLE a(4) = Sum_(i=1..4)C(5+i,6)^3 = C(10,7)*[-15*112827 + 63063*(7*C(15,12) + 195*C(14,12) + 920*C(13,12) + 920*C(12,12)]/415701 = 615000. MAPLE A086028 := proc(n) add( binomial(i+5, 6)^3, i=1..n) ; end proc: seq(A086028(n), n=1..30) ; # R. J. Mathar, Dec 22 2013 MATHEMATICA Table[Sum[Binomial[k+5, 6]^3, {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Nov 22 2017 *) PROG (PARI) for(n=1, 30, print1(sum(k=1, n, binomial(k+5, 6)^3), ", ")) \\ G. C. Greubel, Nov 22 2017 (Magma) [(n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017 CROSSREFS Cf. A087127, A024166, A085438 - A085442, A086020, A086021 - A086030. Sequence in context: A231028 A185746 A202904 * A220650 A178191 A172934 Adjacent sequences: A086025 A086026 A086027 * A086029 A086030 A086031 KEYWORD easy,nonn AUTHOR André F. Labossière, Jul 11 2003 EXTENSIONS More terms from Colin Barker, May 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 19:52 EDT 2024. Contains 373432 sequences. (Running on oeis4.)