The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086028 a(n) = Sum_{i=1..n} C(i+5,6)^3. 20
1, 344, 22296, 615000, 9876000, 108487128, 897376152, 5950405848, 33031486875, 158406862000, 671944398512, 2567519091888, 8965083682032, 28938181326000, 87168786702000, 246953567853744, 662331582918141, 1691011474896264, 4129363811437000, 9684000822437000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
FORMULA
-(n-1)^3*a(n) +2*(n+2)*(n^2 +4*n +31)*a(n-1) -(n+5)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
From Yahia Kahloune, Dec 23 2013; (Start)
a(n) = C(n+6,7)*[-15*F6(n) +63063*(7*C(n+11,12) + 195*C(n+10,12) + *920*C(n+9,12) + 920*C(n+8,12) + 195*C(n+7,12) +7*C(n+6,12))]/415701;
where F6(n) is Sum_(i=1..6)(-1)^i*C(6+i,i)*C(n+6,i) = C(6,0)*C(n+6,0) - C(7,1)*C(n+6,1) + C(8,2)*C(n+6,2) - C(9,3)*C(n+6,3) + C(10,4)*C(n+6,4) - C(11,5)*C(n+6,5) + C(12,6)*C(n+6,6).
The values of F6(n), (n=0...9) are: 1, 1716, 10725, 39754, 112827, 270348, 575107, 1119210, 2031933, 3488500, .... (End)
G.f.: x*(x^12 +324*x^11 +15606*x^10 +233300*x^9 +1424925*x^8 +4050864*x^7 +5703096*x^6 +4050864*x^5 +1424925*x^4 +233300*x^3 +15606*x^2 +324*x +1) / (x -1)^20. - Colin Barker, May 02 2014
a(n) = (n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12). - G. C. Greubel, Nov 22 2017
EXAMPLE
a(4) = Sum_(i=1..4)C(5+i,6)^3 = C(10,7)*[-15*112827 + 63063*(7*C(15,12) + 195*C(14,12) + 920*C(13,12) + 920*C(12,12)]/415701 = 615000.
MAPLE
A086028 := proc(n)
add( binomial(i+5, 6)^3, i=1..n) ;
end proc:
seq(A086028(n), n=1..30) ; # R. J. Mathar, Dec 22 2013
MATHEMATICA
Table[Sum[Binomial[k+5, 6]^3, {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Nov 22 2017 *)
PROG
(PARI) for(n=1, 30, print1(sum(k=1, n, binomial(k+5, 6)^3), ", ")) \\ G. C. Greubel, Nov 22 2017
(Magma) [(n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
Sequence in context: A231028 A185746 A202904 * A220650 A178191 A172934
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms from Colin Barker, May 02 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 19:52 EDT 2024. Contains 373432 sequences. (Running on oeis4.)