OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376, 19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
FORMULA
a(n) = C(n+5,6)^2*(1 + 279*C(n,1) + 681*C(n,2) + 504*C(n,3) + 126*C(n,4) )/280. - Yahia Kahloune, Dec 22 2013
-(n-1)^3*a(n) +(2*n+3)*(n^2+3*n+21)*a(n-1) -(n+4)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
G.f.: -x*(x^10 +200*x^9 +5925*x^8 +52800*x^7 +182700*x^6 +273504*x^5 +182700*x^4 +52800*x^3 +5925*x^2 +200*x +1) / (x -1)^17. - Colin Barker, May 02 2014
a(n) = (n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14). - G. C. Greubel, Nov 22 2017
EXAMPLE
a(3) = C(8,6)^2*(1 + 279*C(3,1) + 681*C(3,2) + 504*C(3,3))/280 = 9478. - Yahia Kahloune, Dec 22 2013
MAPLE
A086026 := proc(n)
add( binomial(i+4, 5)^3, i=1..n) ;
end proc:
seq(A086026(n), n=1..30) ; # R. J. Mathar, Dec 22 2013
MATHEMATICA
Table[Sum[Binomial[i + 4, 5]^3, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
PROG
(PARI) a(n) = sum(i=1, n, binomial(i+4, 5)^3); \\ Michel Marcus, Dec 22 2013
(Magma) [(n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14): n in [1..30]]; // G. C. Greubel, Nov 22 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
André F. Labossière, Jul 11 2003
EXTENSIONS
More terms from Michel Marcus, Dec 22 2013
STATUS
approved