|
|
A118709
|
|
a(n) = determinant of n X n circulant matrix whose first row is the first n cube numbers 0, 1, ..., (n-1)^3.
|
|
1
|
|
|
0, -1, 513, -532800, 1077540500, -3831689610000, 22051842087895137, -192710430555501494272, 2433436736207275231050384, -42684202683959414242500000000, 1007311823853329619224620155226025, -31149342348518897782279760206406615040
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..12.
Eric Weisstein's World of Mathematics, Circulant Matrix.
|
|
FORMULA
|
Contribution from Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010: (Start)
a(n) = (-1)^(n-1)*(n-1)^2*n^(n-2)*(n^(2n)-b(n)^n-c(n)^n+(n^2-3n+3)^n)/24
where
b(n)=(2*n^2-3*n-3+sqrt(15n^2-18n-9)i)/2 and
c(n)=(2*n^2-3*n-3-sqrt(15n^2-18n-9)i)/2 (End)
|
|
EXAMPLE
|
a(2) = -1 because of the determinant -1 =
| 0, 1 |
| 1, 0 |.
a(3) = 513 = determinant
|0,1,8|
|8,0,1|
|1,8,0|.
a(6) = 22051842087895137 = determinant
|0,1,8,27,64,125,216|
|216,0,1,8,27,64,125|
|125,216,0,1,8,27,64|
|64,125,216,0,1,8,27|
|27,64,125,216,0,1,8|
|8,27,64,125,216,0,1|
|1,8,27,64,125,216,0|.
|
|
MATHEMATICA
|
Table[Det[Table[RotateRight[Range[0, i]^3, n], {n, 0, i}]], {i, 0, 10}] (* Harvey P. Dale, Oct 22 2012 *)
|
|
CROSSREFS
|
See also: A000578 The cubes: a(n) = n^3. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.
Cf. A000578, A048954, A052182, A066933, A086459, A086569.
Sequence in context: A086030 A094647 A236431 * A296145 A283369 A103351
Adjacent sequences: A118706 A118707 A118708 * A118710 A118711 A118712
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Jonathan Vos Post, May 20 2006
|
|
EXTENSIONS
|
More terms from Harvey P. Dale, Oct 22 2012
|
|
STATUS
|
approved
|
|
|
|