login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A118707
a(n) = determinant of n X n circulant matrix whose first row is the first n square numbers 0, 1, ..., (n-1)^2.
1
0, -1, 65, -6720, 1080750, -252806400, 81433562119, -34630270976000, 18813448225370124, -12719917900800000000, 10478214213011739186685, -10333870908014534470926336, 12023263324381930168836397850, -16297888825404790818315505238016
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Circulant Matrix.
FORMULA
a(n) = (-1)^(n-1)*(n-1)*(2*n-1)*n^(n-2)*(n^n-(n-2)^n)/12 [From Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010]
EXAMPLE
a(2) = -1 because of the determinant -1 =
| 0, 1 |
| 1, 0 |.
a(3) = 65 = determinant
|0,1,4|
|4,0,1|
|1,4,0|.
CROSSREFS
See also: A000290 The squares: a(n) = n^2. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.
Sequence in context: A115432 A116104 A116121 * A282839 A144661 A296144
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, May 20 2006
EXTENSIONS
More terms from Alois P. Heinz, Mar 16 2017
STATUS
approved