login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118708 Triangle, T(n, k) is the coefficient of x^k in ( Product_{j=1..n} (1 - A002110(j)*x) ), read by rows. 1
1, 1, -2, 1, -8, 12, 1, -38, 252, -360, 1, -248, 8232, -53280, 75600, 1, -2558, 581112, -19069200, 123152400, -174636000, 1, -32588, 77397852, -17469862560, 572771228400, -3698441208000, 5244319080000, 1, -543098, 16713897732, -39529847287080, 8919112306734000, -292409138251692000, 1888096465415160000, -2677277333530800000 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Rows n = 0..30 of the triangle, flattened

FORMULA

T(n, k) = [x^k]( Product_{j=1..n} (1 - p(j)*x) ), where p(n) = Prime(n)*p(n-1) and p(1) = 2.

T(n, n) = A006939(n).

EXAMPLE

Triangle begins as:

1;

1, -2;

1, -8, 12;

1, -38, 252, -360;

1, -248, 8232, -53280, 75600;

1, -2558, 581112, -19069200, 123152400, -174636000;

MATHEMATICA

p[n_]:= p[n]= If[n==1, 2, Prime[n]*p[n-1]]; (* p = A002110 *)

Table[CoefficientList[Product[1 - p[j]*x, {j, n}], x], {n, 0, 12}]

PROG

(Magma)

m:=15;

function A002110(n)

if n eq 1 then return 2;

else return NthPrime(n)*A002110(n-1);

end if; return A002110;

end function;

f:= func< n, x | n eq 0 select 1 else (&*[(1 - A002110(j)*x): j in [1..n]]) >;

R<x>:=PowerSeriesRing(Integers(), m+2);

T:= func< n | Coefficients(R!( f(n, x) )) >;

[T(n): n in [0..m]]; // G. C. Greubel, Dec 09 2022

(SageMath)

def p(n): return 2 if (n==1) else nth_prime(n)*p(n-1) # p = A002110

def f(n, x): return product((1 - p(j)*x) for j in range(1, n+1))

def A118708(n, k): return 1 if (n==0) else ( f(n, x) ).series(x, n+1).list()[k]

flatten([[A118708(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Dec 09 2022

CROSSREFS

Cf. A002110, A006939, A034386.

Sequence in context: A007026 A160485 A328821 * A055134 A137370 A214272

Adjacent sequences: A118705 A118706 A118707 * A118709 A118710 A118711

KEYWORD

sign,tabl

AUTHOR

Roger L. Bagula, May 20 2006

EXTENSIONS

Edited by G. C. Greubel, Dec 09 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 2 00:42 EDT 2023. Contains 361723 sequences. (Running on oeis4.)