login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328821
Triangular array read by rows. Let P be the poset of all even sized subsets of [2n] ordered by inclusion. T(n,k) is the number of intervals in P with length k, 0<=k<=n, n>=0.
0
1, 2, 1, 8, 12, 1, 32, 120, 30, 1, 128, 896, 560, 56, 1, 512, 5760, 6720, 1680, 90, 1, 2048, 33792, 63360, 29568, 3960, 132, 1, 8192, 186368, 512512, 384384, 96096, 8008, 182, 1, 32768, 983040, 3727360, 4100096, 1647360, 256256, 14560, 240, 1
OFFSET
0,2
FORMULA
Let E(x) = Sum_{n>=0} x^n/((2n)!/2^n). Then Sum_{n>=0} Sum{k=0..n} T(n,k) y^k*x^n/((2n)!/2^n) = E(y*x) * E(x)^2.
EXAMPLE
1,
2, 1,
8, 12, 1,
32, 120, 30, 1,
128, 896, 560, 56, 1,
512, 5760, 6720, 1680, 90, 1
MATHEMATICA
nn = 8; ev[x_] := Sum[x^n/((2 n)!/2^n), {n, 0, nn}];
Map[Select[#, # > 0 &] &, Table[(2 n)!/2^n, {n, 0, nn}] CoefficientList[Series[ev[x]^2 ev[y x], {x, 0, nn}], {x, y}]] // Flatten
CROSSREFS
Cf. A054879 (row sums), A081294 (column k=0).
Sequence in context: A164662 A007026 A160485 * A367382 A118708 A055134
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jun 07 2020
STATUS
approved