|
|
A328822
|
|
Primes of the form p=3*q+3*r+q*r where q and r are distinct primes and 2*p-3*q, 2*p-3*r and 2*p-q*r are also prime.
|
|
2
|
|
|
103, 151, 439, 503, 727, 751, 887, 1063, 1091, 1223, 1447, 1951, 2791, 2903, 3079, 3191, 3371, 3491, 3851, 4567, 5051, 5431, 5591, 5647, 6151, 6491, 7591, 9463, 9623, 11171, 12911, 14891, 15511, 16183, 17203, 18787, 19031, 19403, 19991, 20231, 21863, 22111, 22391, 22567, 24251, 24407, 26951
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first term that occurs for more than one pair (q,r) is a(11)=1447, which corresponds to (q,r) = (5, 179) and (11, 101).
The first term that occurs for more than two pairs (q,r) is a(2579)=15108791, which corresponds to (q,r) = (17, 755437), (37, 377717), and (2797, 5393).
|
|
LINKS
|
|
|
EXAMPLE
|
a(3)=439 is in the sequence because q=5 and r=53 are distinct primes with 439=3*q+3*r+q*r and 439, 2*439-3*q=863, 2*439-3*r=719 and 2*439-q*r=613 are all primes.
|
|
MAPLE
|
N:= 10^5: # to get all terms <= N
Primes:= select(isprime, [seq(i, i=3..nextprime(N/8), 2)]):
filter:= proc(p, q, r)
isprime(p*q+2*p*r+2*q*r) and isprime(2*p*q+p*r+2*q*r) and isprime(2*p*q+2*p*r+q*r)
end proc:
p:= 3: R:= {}:
for iq from 2 do
q:= Primes[iq];
if 2*p*q + q^2 >= N then break fi;
for ir from iq+1 do
r:= Primes[ir];
s:= p*q + q*r + p*r;
if s > N then break fi;
if isprime(s) and filter(p, q, r) then
R:= R union {s};
fi;
od od:
sort(convert(R, list));
|
|
MATHEMATICA
|
M = 10^5; (* to get all terms <= M *)
filterQ[p_, q_, r_] := PrimeQ[p q + 2 p r + 2 q r] && PrimeQ[2 p q + p r + 2 q r] && PrimeQ[2 p q + 2 p r + q r];
primes = Select[Table[i, {i, 3, NextPrime[M/8], 2}], PrimeQ];
p = 3; R = {};
For[iq = 2, True, iq++, q = primes[[iq]]; If[2 p q + q^2 >= M, Break[]]; For[ir = iq + 1, True, ir++, r = primes[[ir]]; s = p q + q r + p r; If[s > M, Break[]]; If[PrimeQ[s] && filterQ[p, q, r], R = Union[R, {s}]]]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|