login
A236431
Numbers n such that both prime(n)+n and prime(n)-n give a triangular number.
0
1, 513, 213796
OFFSET
1,2
COMMENTS
Intersection of A115882 and A115883.
The corresponding primes are 2, 3673, 2955107.
No more terms up to 10^12. - Giovanni Resta, Jan 26 2014
EXAMPLE
prime(1) is 2, and both 2+1=3 and 2-1=1 are triangular.
MATHEMATICA
Select[Range[214000], AllTrue[{Sqrt[8(Prime[#]-#)+1], Sqrt[8(Prime[#]+#)+ 1]}, OddQ]&] (* Harvey P. Dale, Jul 22 2022 *)
PROG
(PARI) lista(nn) = {p = primes(nn); for (n=1, #p, pn = p[n]; if (ispolygonal(pn - n, 3) && ispolygonal(pn + n, 3), print1(n, ", ")); ); }
CROSSREFS
Sequence in context: A168118 A086030 A094647 * A118709 A296145 A283369
KEYWORD
nonn,bref,more
AUTHOR
Michel Marcus, Jan 25 2014
STATUS
approved