The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103351 Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n). 3
 1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) gives the partial sums, Zeta(9,n), of Euler's Zeta(9). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805. For the denominators see A103352 and for the rationals Zeta(9,n) see the W. Lang link under A103345. LINKS FORMULA a(n) = numerator(sum_{k=1..n} 1/k^9). G.f. for rationals Zeta(9, n): polylogarithm(9, x)/(1-x). MATHEMATICA s=0; lst={}; Do[s+=n^1/n^10; AppendTo[lst, Numerator[s]], {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *) Table[ HarmonicNumber[n, 9] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *) CROSSREFS For k=1..8 see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052, A103345/A103346, A103347/A103348, A103349/A103350. Sequence in context: A118709 A296145 A283369 * A291507 A275099 A238615 Adjacent sequences:  A103348 A103349 A103350 * A103352 A103353 A103354 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Feb 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 15:36 EST 2021. Contains 349394 sequences. (Running on oeis4.)