login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=1..n} C(i+6,7)^3.
23

%I #37 Jun 11 2023 12:15:18

%S 1,513,47169,1775169,37712169,534505257,5587534953,46011772521,

%T 312480135396,1809674119396,9165388162788,41395684407012,

%U 169328324418084,635173167426084,2207399512578084,7167715400927268,21902130296812161,63361228916945025,174437774859945025

%N a(n) = Sum_{i=1..n} C(i+6,7)^3.

%H Vincenzo Librandi, <a href="/A086030/b086030.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).

%F a(n) = C(n+7,8)*(5*C(n+13,14) + 210*C(n+12,14) + 1491*C(n+11,14) + 2828*C(n+10,14) + 1491*C(n+9,14) + 210*C(n+8,14) + 5*C(n+7,14))/5. - _Yahia Kahloune_, Dec 22 2013

%F -(n-1)^3*a(n) +(2*n+5)*(n^2+5*n+43)*a(n-1) -(n+6)^3*a(n-2)=0. - _R. J. Mathar_, Dec 22 2013

%F G.f.: -x*(x^14 + 490*x^13 + 35623*x^12 + 818300*x^11 + 7917371*x^10 + 37215794*x^9 + 91789005*x^8 + 123519792*x^7 + 91789005*x^6 + 37215794*x^5 + 7917371*x^4 + 818300*x^3 + 35623*x^2 + 490*x + 1)/(x-1)^23. - _Vaclav Kotesovec_, Dec 23 2013

%F a(n) = (1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6). - _G. C. Greubel_, Nov 22 2017

%e a(3) = Sum_{i=1..3} C(6+i,7)^3 = C(10,8)*(5*C(16,14) + 210*C(15,14) + 1491*C(14,14))/5 = 47169.

%p A086030:=n->add(binomial(i+6,7)^3, i=1..n); seq(A086030(n), n=1..30); # _Wesley Ivan Hurt_, Dec 22 2013

%t Table[Sum[Binomial[i + 6, 7]^3, {i, n}], {n, 30}] (* _Wesley Ivan Hurt_, Dec 22 2013 *)

%o (PARI) a(n) = sum(i=1, n, binomial(i+6, 7)^3); \\ _Michel Marcus_, Dec 22 2013

%o (Magma) [(1/28165294080000)*n^2*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)^2*(5 + n)^2*(6 + n)^2*(7 + n)^2*(-3 + 3234*n + 6979*n^2 + 5292*n^3 + 1603*n^4 + 210*n^5 + 10*n^6): n in [1..30]]; // _G. C. Greubel_, Nov 22 2017

%Y Cf. A087127, A024166, A085438 - A085442, A086020 - A086029.

%K easy,nonn

%O 1,2

%A _André F. Labossière_, Jul 11 2003