login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=1..n} binomial(i+1,2)^7.
25

%I #28 Sep 08 2022 08:45:11

%S 1,2188,282124,10282124,181141499,1982230040,15475158552,93839322648,

%T 467508775773,1989944010148,7445104711204,25010673566116,

%U 76686775501847,217396817767472,575714897767472,1436257466526768,3398894618986905,7674255436599996,16612972826599996

%N a(n) = Sum_{i=1..n} binomial(i+1,2)^7.

%H T. D. Noe, <a href="/A085442/b085442.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).

%F a(n) = (1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568). - _Vladeta Jovovic_, Jul 07 2003

%F G.f.: x*(x^12 +2172*x^11 +247236*x^10 +6030140*x^9 +49258935*x^8 +163809288*x^7 +242384856*x^6 +163809288*x^5 +49258935*x^4 +6030140*x^3 +247236*x^2 +2172*x+ 1) / (x -1)^16. - _Colin Barker_, May 02 2014

%t Table[Sum[Binomial[k+1,2]^7, {k,1,n}], {n,1,30}] (* _G. C. Greubel_, Nov 22 2017 *)

%t LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1,2188,282124,10282124,181141499,1982230040,15475158552,93839322648,467508775773,1989944010148,7445104711204,25010673566116,76686775501847,217396817767472,575714897767472,1436257466526768},20] (* _Harvey P. Dale_, May 11 2022 *)

%o (PARI) for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^7), ", ")) \\ _G. C. Greubel_, Nov 22 2017

%o (Magma) [(1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568): n in [1..30]]; // _G. C. Greubel_, Nov 22 2017

%Y Column k=7 of A334781.

%Y Cf. A000292, A087127, A024166, A024166, A085438, A085439, A085440, A085441, A000332, A086020, A086021, A086022, A000389, A086023, A086024, A000579, A086025, A086026, A000580, A086027, A086028, A027555, A086029, A086030.

%K easy,nonn

%O 1,2

%A _André F. Labossière_, Jul 07 2003