login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348490
Positive numbers whose square starts and ends with exactly one 6.
3
26, 246, 254, 256, 264, 776, 784, 786, 794, 796, 804, 806, 824, 826, 834, 836, 2454, 2456, 2464, 2466, 2474, 2476, 2484, 2486, 2494, 2496, 2504, 2506, 2514, 2516, 2524, 2526, 2534, 2536, 2544, 2546, 2554, 2556, 2564, 2566, 2594, 2596, 2604, 2606, 2614, 2616, 2624, 2626, 2634, 2636, 2644, 7746
OFFSET
1,1
COMMENTS
When a square ends with 6, it ends with only one 6.
From Marius A. Burtea, Oct 30 2021 : (Start)
The sequence is infinite because the numbers 806, 8006, 80006, ..., 8*10^k + 6, k >= 2, are terms with squares 649636, 64096036, 6400960036, 640009600036, ..., 64*10^(2*k) + 96*10^k + 36, k >= 2.
Numbers 796, 7996, 79996, 799996, 7999996, 79999996, ..., 10^k*8 - 4, k >= 2, are terms and have no digits 0, because their squares are 633616, 63936016, 6399360016, 639993600016, 63999936000016, 6399999360000016, ....
Also 794, 7994, 79994, 799994, ..., (8*10^k - 6), k >= 2, are terms and have no digits 0, because their squares are 630436, 63904036, 6399040036, 639990400036, 63999904000036, 6399999040000036, ... (End)
EXAMPLE
26^2 = 676, hence 26 is a term.
814^2 = 662596, hence 814 is not a term.
MATHEMATICA
Select[Range[10, 7750], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 6 && d[[2]] != 6 &] (* Amiram Eldar, Oct 30 2021 *)
PROG
(Python)
from itertools import count, takewhile
def ok(n):
s = str(n*n); return len(s.rstrip("6")) == len(s.lstrip("6")) == len(s)-1
def aupto(N):
r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [4, 6]))
return [k for k in r if ok(k)]
print(aupto(2644)) # Michael S. Branicky, Oct 29 2021
(PARI) isok(k) = my(d=digits(sqr(k))); (d[1]==6) && (d[#d]==6) && if (#d>2, (d[2]!=6) && (d[#d-1]!=6), 1); \\ Michel Marcus, Oct 30 2021
(Magma) [n:n in [4..7500]|Intseq(n*n)[1] eq 6 and Intseq(n*n)[#Intseq(n*n)] eq 6 and Intseq(n*n)[-1+#Intseq(n*n)] ne 6 ]; // Marius A. Burtea, Oct 30 2021
CROSSREFS
Cf. A045789, A045860, A273373 (squares ending with 6).
Similar to: A348487 (k=1), A348488 (k=4), A348489 (k=5), this sequence (k=6), A348491 (k=9).
Subsequence of A305719.
Sequence in context: A020537 A184461 A088889 * A060105 A108645 A086023
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Oct 29 2021
STATUS
approved