login
A143037
Triangle read by rows, A000012 * A127773 * A000012. A000012 is an infinite lower triangular matrix with all 1's, A127773 = (1; 0,3; 0,0,6; 0,0,0,10; ...).
5
1, 3, 4, 6, 9, 10, 10, 16, 19, 20, 15, 25, 31, 34, 35, 21, 36, 46, 52, 55, 56, 28, 49, 64, 74, 80, 83, 84, 36, 64, 85, 100, 110, 116, 119, 120, 45, 81, 109, 130, 145, 155, 161, 164, 165, 55, 100, 136, 164, 185, 200, 210, 216, 219, 220
OFFSET
1,2
COMMENTS
Right border = tetrahedral numbers, left border = triangular numbers.
Alternatively this is the square array A(n,k)
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ...
10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ...
20, 34, 52, 74, 100, 130, 164, 202, 244, 290, ...
35, 55, 80, 110, 145, 185, 230, 280, 335, 395, ...
56, 83, 116, 155, 200, 251, 308, 371, 440, 515, ...
...
read by antidiagonals where A(n,k) = n*(n^2 + 3*k*n + 3*k^2 - 1)/6 is the sum of n triangular numbers starting at A000217(k). - R. J. Mathar, May 06 2015
FORMULA
T(n,k) = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6. - R. J. Mathar, Aug 31 2022
EXAMPLE
First few rows of the triangle:
1;
3, 4;
6, 9, 10;
10, 16, 19, 20;
15, 25, 31, 34, 35;
21, 36, 46, 52, 55, 56;
28, 49, 64, 74, 80, 83, 84;
36, 64, 85, 100, 110, 116, 119, 120;
...
MAPLE
A143037 := proc(n, k)
k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6 ;
end proc:
seq(seq(A143037(n, k), k=1..n), n=1..12) ; # R. J. Mathar, Aug 31 2022
CROSSREFS
Cf. A001296 (row sums).
Sequence in context: A028987 A284615 A186709 * A225059 A190899 A173671
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved