login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024163
Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b < b - a.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 6, 3, 6, 6, 6, 6, 10, 6, 10, 10, 10, 10, 15, 10, 15, 15, 15, 15, 21, 15, 21, 21, 21, 21, 28, 21, 28, 28, 28, 28, 36, 28, 36, 36, 36, 36, 45, 36, 45, 45, 45, 45, 55, 45, 55, 55, 55, 55, 66, 55, 66, 66, 66, 66, 78, 66, 78, 78, 78, 78, 91
OFFSET
1,17
LINKS
FORMULA
G.f.: x^11/((1-x^2)*(1-x^3)*(1-x^6)). - Tani Akinari, Oct 27 2014
EXAMPLE
2,4,5 for n=11 is the smallest such triangle.
MATHEMATICA
CoefficientList[Series[x^10/((1-x^2)(1-x^3)(1-x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 28 2014 *)
PROG
(PARI) concat(vector(11, i, 0), Vec(1/(1-x^2)/(1-x^3)/(1-x^6)+O(x^99))) \\ Charles R Greathouse IV, Oct 28 2014
(Sage)
def A024163_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( x^11/((1-x^2)*(1-x^3)*(1-x^6)) ).list()
a=A024163_list(100); a[1:] # G. C. Greubel, Jul 03 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 100);
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!( x^11/((1-x^2)*(1-x^3)*(1-x^6)) )); // G. C. Greubel, Jul 03 2021
CROSSREFS
Cf. A024165.
Sequence in context: A063195 A334070 A025796 * A029155 A042951 A194299
KEYWORD
nonn,easy
STATUS
approved