login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101097
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(2 + 4*n + n^2)/840.
16
1, 12, 69, 272, 846, 2232, 5214, 11088, 21879, 40612, 71643, 121056, 197132, 310896, 476748, 713184, 1043613, 1497276, 2110273, 2926704, 3999930, 5393960, 7184970, 9462960, 12333555, 15919956, 20365047, 25833664, 32515032, 40625376, 50410712
OFFSET
1,2
COMMENTS
Fourth partial sums of cubes (A000578). Partial sums of A101094.
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) for k=4. - Alexander R. Povolotsky, May 17 2008
G.f.: x*(1 + 4*x + x^2)/(1-x)^8. - R. J. Mathar, Jun 13 2008
a(n) = Sum_{k=1..n} A000217(k)^2*A000217(n-k+1). - Bruno Berselli, Sep 04 2013
E.g.f.: x*(840 + 4200*x + 5040*x^2 + 2240*x^3 + 427*x^4 + 35*x^5 + x^6) *exp(x)/840. - G. C. Greubel, Dec 01 2018
MATHEMATICA
Table[Binomial[n+4, 5]*(2+4*n+n^2)/7, {n, 0, 50}] (* G. C. Greubel, Feb 17 2017 *)
PROG
(PARI) {A101097(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(2+4*n+n^2)/840} \\ R. J. Mathar, Dec 06 2011
(Magma) A000217:=func<i | i*(i+1)/2>; [&+[A000217(k)^2*A000217(n-k+1): k in [1..n]]: n in [1..40]]; // Bruno Berselli, Sep 04 2013
(Sage) [binomial(n+4, 5)*(2+4*n+n^2)/7 for n in (1..40)] # G. C. Greubel, Dec 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
EXTENSIONS
Edited by Ralf Stephan, Dec 16 2004
STATUS
approved