The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234253 a(n) = sum_{i=1..n} C(7+i,8)^2. 3
1, 82, 2107, 29332, 274357, 1930726, 10948735, 52357960, 217994860, 808970960, 2723733524, 8436372248, 24304813148, 65712993248, 167965846148, 408373664744, 949291256585, 2119095737210, 4559798912835, 9488531918460, 19148848609485, 37571357310510 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In general we have the following formula : a(n) = Sum_{i=1..n}C(e-1+i,e)^2 = C(n+e-1,e+1)*Fe(n)/C(2*e+1). We have the following definition : Fe(n) = Sum_{i=1..n}(-1)^(e+i)*C(e+i,i)*C(n+e,i), and Fe(1) = C(2*e+1,e). [This needs clarification, Joerg Arndt, May 04 2014]
LINKS
Index entries for linear recurrences with constant coefficients, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
FORMULA
a(n) = sum_{i=1..n)C(7+i,8)^2 = C(n+8,9)*F8(n)/C(17,8) ; F8(n)= Sum_{i=1..n}(-1)^(8+i)*C(8+i,i)*C(n+8,i) = C(8,0)*C(n+8,0) - C(9,1)*C(n+8,1) + C(10,2)*C(n+8,2) - C(11,3)*C(n+8,3) + C(12,4)*C(n+8,4) - C(13,5)*C(n+8,5) + C(14,6)*C(n+8,6) - C(15,7)*C(n+8,7) + C(16,8)*Cn+8,8). We have the following values for F8(n) : F8(0)=1, F8(1)=24310, F8(2)=199342, F8(3)=931294, .... [This needs clarification, Joerg Arndt, May 04 2014]
G.f.: x*(x^8 +64*x^7 +784*x^6 +3136*x^5 +4900*x^4 +3136*x^3 +784*x^2 +64*x +1) / (x-1)^18. - Colin Barker, May 02 2014
EXAMPLE
For n=3, Sum_{i=1..3)C(7+i,8)^2 = C(11,9)*F8(3)/C(17,8) = 55*931294/24310 = 2107. [This needs clarification, Joerg Arndt, May 04 2014]
MAPLE
A234253:=n->add(binomial(7+i, 8)^2, i=1..n); seq(A234253(n), n=1..30); # Wesley Ivan Hurt, Dec 23 2013
MATHEMATICA
Table[Sum[Binomial[7 + i, 8]^2, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 23 2013 *)
CoefficientList[Series[(x^8 + 64 x^7 + 784 x^6 + 3136 x^5 + 4900 x^4 + 3136 x^3 + 784 x^2 + 64 x + 1)/(x - 1)^18, {x, 0, 40}], x] (* Vincenzo Librandi, May 06 2014 *)
PROG
(PARI) Vec(x*(x^8 +64*x^7 +784*x^6 +3136*x^5 +4900*x^4 +3136*x^3 +784*x^2 +64*x +1)/(x-1)^18 + O(x^100)) \\ Colin Barker, May 02 2014
CROSSREFS
Sequence in context: A282155 A280857 A281603 * A031606 A232904 A230395
KEYWORD
nonn,easy
AUTHOR
Yahia Kahloune, Dec 22 2013
EXTENSIONS
One term corrected and more terms from Colin Barker, May 02 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 04:49 EDT 2024. Contains 373393 sequences. (Running on oeis4.)