login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234250
Number of ways to choose 3 points in an n X n X n triangular grid so that they do not form a 2 X 2 X 2 triangle.
4
0, 16, 111, 439, 1305, 3240, 7091, 14126, 26154, 45660, 75955, 121341, 187291, 280644, 409815, 585020, 818516, 1124856, 1521159, 2027395, 2666685, 3465616, 4454571, 5668074, 7145150, 8929700, 11070891, 13623561, 16648639, 20213580, 24392815, 29268216, 34929576
OFFSET
2,2
FORMULA
a(n) = (n - 1)*(n - 2)*(n^4 + 6*n^3 + 13*n^2 + 16*n - 24)/48.
G.f.: x^3*(x^4-3*x^3+2*x^2+x-16) / (x-1)^7. - Colin Barker, Feb 05 2014
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 16, 111, 439, 1305, 3240, 7091}, 40] (* Harvey P. Dale, Mar 09 2019 *)
PROG
(PARI) Vec(x^3*(x^4-3*x^3+2*x^2+x-16)/(x-1)^7 + O(x^100)) \\ Colin Barker, Feb 05 2014
CROSSREFS
Sequence in context: A053526 A107908 A177046 * A240786 A213754 A371114
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Feb 04 2014
STATUS
approved