OFFSET
3,1
COMMENTS
All elements of the sequence are multiples of 15.
a(n-1) is the number of chiral pairs of colorings of the 8 cubic facets of a tesseract (hypercube) with Schläfli symbol {4,3,3} or of the 8 vertices of a hyperoctahedron with Schläfli symbol {3,3,4}. Both figures are regular 4-D polyhedra and they are mutually dual. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020
LINKS
Heinrich Ludwig, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384.
a(n) = C(C(n + 1, 2), 4).
G.f.: -15*x^3*(x^2+5*x+1) / (x-1)^9. - Colin Barker, Feb 02 2014
From Robert A. Russell, Oct 20 2020: (Start)
a(n-1) = 15*C(n,4) + 135*C(n,5) + 330*C(n,6) + 315*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n-1) = A325006(4,n). (End)
MAPLE
A234249:=n->n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384: seq(A234249(n), n=3..40); # Wesley Ivan Hurt, Jan 10 2017
MATHEMATICA
Table[Binomial[Binomial[n, 2], 4], {n, 4, 30}] (* Robert A. Russell, Oct 20 2020 *)
PROG
(PARI) Vec(-15*x^3*(x^2+5*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 02 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Feb 02 2014
STATUS
approved