login
A234246
a(n) = |{0 < k < n: k*phi(n-k) + 1 is a square}|, where phi(.) is Euler's totient function.
10
0, 0, 0, 1, 1, 0, 2, 1, 1, 3, 2, 1, 1, 2, 3, 4, 5, 4, 2, 2, 2, 5, 4, 1, 5, 4, 4, 3, 2, 8, 5, 2, 1, 3, 9, 5, 9, 4, 4, 6, 2, 4, 9, 5, 5, 7, 9, 3, 1, 10, 6, 8, 3, 6, 4, 5, 7, 8, 3, 5, 5, 4, 6, 6, 10, 14, 8, 3, 3, 6, 9, 5, 7, 7, 9, 2, 8, 8, 9, 5, 6, 6, 6, 8, 9, 7, 9, 4, 5, 9, 10, 8, 8, 7, 14, 9, 5, 7, 6, 10
OFFSET
1,7
COMMENTS
Conjecture: (i) a(n) > 0 if n is not a divisor of 6. The only values of n with a(n) = 1 are 4, 5, 8, 9, 12, 13, 24, 33, 49.
(ii) If n >= 60, then k + phi(n-k) is a square for some 0 < k < n. If n > 60, then sigma(k) + phi(n-k) is a square for some 0 < k < n, where sigma(k) is the sum of all positive divisors of k.
(iii) If n > 7 is not equal to 10 or 20, then phi(k)*phi(n-k) + 1 is a square for some 0 < k < n.
(iv) If n > 7 is not equal to 10 or 19, then (phi(k) + phi(n-k))/2 is a triangular number for some 0 < k < n.
Note that (n - 1)*phi(1) + 1 = n. So a(n) > 0 if n is a square.
EXAMPLE
a(4) = 1 since 3*phi(1) + 1 = 2^2.
a(5) = 1 since 3*phi(2) + 1 = 2^2.
a(8) = 1 since 4*phi(4) + 1 = 3^2.
a(9) = 1 since 8*phi(1) + 1 = 3^2.
a(12) = 1 since 2*phi(10) + 1 = 3^2.
a(13) = 1 since 4*phi(9) + 1 = 5^2.
a(14) = 2 since 2*phi(12) + 1 = 3^2 and 6*phi(8) + 1 = 5^2.
a(24) = 1 since 12*phi(12) + 1 = 7^2.
a(33) = 1 since 3*phi(30) + 1 = 5^2.
a(49) = 1 since 48*phi(1) + 1 = 7^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
a[n_]:=Sum[If[SQ[k*EulerPhi[n-k]+1], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 21 2013
STATUS
approved