OFFSET
1,7
COMMENTS
Conjecture: (i) a(n) > 0 if n is not a divisor of 6. The only values of n with a(n) = 1 are 4, 5, 8, 9, 12, 13, 24, 33, 49.
(ii) If n >= 60, then k + phi(n-k) is a square for some 0 < k < n. If n > 60, then sigma(k) + phi(n-k) is a square for some 0 < k < n, where sigma(k) is the sum of all positive divisors of k.
(iii) If n > 7 is not equal to 10 or 20, then phi(k)*phi(n-k) + 1 is a square for some 0 < k < n.
(iv) If n > 7 is not equal to 10 or 19, then (phi(k) + phi(n-k))/2 is a triangular number for some 0 < k < n.
Note that (n - 1)*phi(1) + 1 = n. So a(n) > 0 if n is a square.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(4) = 1 since 3*phi(1) + 1 = 2^2.
a(5) = 1 since 3*phi(2) + 1 = 2^2.
a(8) = 1 since 4*phi(4) + 1 = 3^2.
a(9) = 1 since 8*phi(1) + 1 = 3^2.
a(12) = 1 since 2*phi(10) + 1 = 3^2.
a(13) = 1 since 4*phi(9) + 1 = 5^2.
a(14) = 2 since 2*phi(12) + 1 = 3^2 and 6*phi(8) + 1 = 5^2.
a(24) = 1 since 12*phi(12) + 1 = 7^2.
a(33) = 1 since 3*phi(30) + 1 = 5^2.
a(49) = 1 since 48*phi(1) + 1 = 7^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
a[n_]:=Sum[If[SQ[k*EulerPhi[n-k]+1], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 21 2013
STATUS
approved