login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233918
a(n) = |{0 < k <= n/2: (phi(k) + phi(n-k))/2 is prime}|, where phi(.) is Euler's totient function.
8
0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 2, 3, 1, 3, 2, 4, 3, 2, 7, 1, 3, 3, 4, 7, 2, 4, 5, 5, 5, 5, 6, 6, 4, 7, 5, 6, 4, 4, 11, 5, 5, 5, 11, 4, 3, 5, 7, 12, 4, 6, 11, 3, 6, 7, 8, 6, 7, 8, 11, 10, 5, 9, 7, 9, 5, 4, 14, 8, 9, 6, 10, 7, 6, 10, 9, 10, 7, 10, 11, 7, 7, 13, 11, 13, 5, 8, 11, 9, 9, 3, 12, 4, 11, 13, 11, 19, 8, 12, 11, 7
OFFSET
1,8
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 5.
(ii) If n > 5 is not equal to 19, then phi(k) + phi(n-k) - 1 and phi(k) + phi(n-k) + 1 are both prime for some 0 < k < n.
(iii) If n > 5, then (phi(k)/2)^2 + (phi(n-k)/2)^2 is prime for some 0 < k < n.
(iv) If n > 8, then (sigma(k) + phi(n-k))/2 is prime for some 0 < k < n, where sigma(k) is the sum of all positive divisors of k.
LINKS
Zhi-Wei Sun, New representation problems involving Euler's totient function, a message to Number Theory List, Dec. 18, 2013.
EXAMPLE
a(6) = 1 since (phi(3) + phi(3))/2 = 2 is prime.
a(7) = 1 since (phi(3) + phi(4))/2 = 2 is prime.
a(10) = 1 since (phi(4) + phi (6))/2 = 2 is prime.
a(13) = 1 since (phi(3) + phi(10))/2 = 3 is prime.
a(20) = 1 since (phi(4) + phi(16))/2 = 5 is prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[(EulerPhi[k]+EulerPhi[n-k])/2], 1, 0], {k, 1, n/2}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 21 2013
STATUS
approved