login
A162785
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
2
1, 15, 210, 2835, 38220, 514605, 6928740, 93285465, 1255955610, 16909618635, 227663487870, 3065158424055, 41267909559240, 555612506386665, 7480515990707760, 100714290692336685, 1355971748798391270
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(91*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 14*x + 104*x^3 - 91*x^4). - G. C. Greubel, Apr 26 2019
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4), {x, 0, 20}], x] (* or *) coxG[{3, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)) \\ G. C. Greubel, Apr 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, Apr 26 2019
(Sage) ((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
(GAP) a:=[15, 210, 2835];; for n in [4..20] do a[n]:=13*a[n-1]+13*a[n-2] -91*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
CROSSREFS
Sequence in context: A234249 A112496 A000483 * A076139 A163091 A163440
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved