login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112496
Fourth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.
4
15, 210, 1750, 11368, 63805, 325930, 1561516, 7150000, 31682651, 137031986, 582035714, 2438479592, 10109790809, 41579014154, 169946747160, 691299506640, 2801567046135, 11320801495410, 45642930545070, 183698923750440
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288).
FORMULA
G.f.: (15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)).
a(n) = 4*a(n-1) + (n+5)*A112495(n).
a(n) = 2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6. - Vaclav Kotesovec, Jul 23 2021
MATHEMATICA
CoefficientList[Series[(15 - 90*x + 175*x^2 - 112*x^3)/((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)), {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
Table[2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6, {n, 0, 25}] (* Vaclav Kotesovec, Jul 23 2021 *)
PROG
(PARI) x='x+O('x^50); Vec((15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x))) \\ G. C. Greubel, Nov 13 2017
CROSSREFS
Cf. A112495 (third column).
Column k=3 of A124324 (shifted).
Sequence in context: A067560 A019553 A234249 * A000483 A162785 A076139
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 14 2005
STATUS
approved