login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112497 Fifth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals. 3
105, 2205, 26775, 247555, 1939630, 13609310, 88346258, 541831290, 3184396215, 18114492851, 100467071393, 546227989621, 2923225973476, 15447710150460, 80807432442660, 419245751359380, 2160664798858005, 11075023230179865 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (35, -560, 5432, -35714, 168542, -589632, 1556776, -3126949, 4777591, -5506936, 4703032, -2881136, 1195632, -300672, 34560).
FORMULA
G.f.: (105-1470*x+8400*x^2-25130*x^3+41615*x^4-36280*x^5+13048*x^6) / product((1-j*x)^(6-j), j=1..5).
a(n) = 5*a(n-1) + (n+7)*A112496(n).
MATHEMATICA
CoefficientList[Series[(105 - 1470*x + 8400*x^2 - 25130*x^3 + 41615*x^4 - 36280*x^5 + 13048*x^6)/Product[(1 - j*x)^(6 - j), {j, 1, 5}], {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((105 -1470*x +8400*x^2 -25130*x^3 +41615*x^4 -36280*x^5 +13048*x^6)/((1-x)^5*(1-2*x)^4*(1-3*x)^3*(1-4*x)^2*(1-5*x))) \\ G. C. Greubel, Nov 13 2017
CROSSREFS
Cf. A112496 (fourth column).
Column k=4 of A124324 (shifted).
Sequence in context: A165374 A024198 A027788 * A220822 A166821 A166803
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 14 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 18:43 EDT 2024. Contains 371765 sequences. (Running on oeis4.)