The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112494 Sixth diagonal of the Stirling2 triangle A048993 and sixth column of triangle A008278. 3
 1, 63, 966, 7770, 42525, 179487, 627396, 1899612, 5135130, 12662650, 28936908, 62022324, 125854638, 243577530, 452329200, 809944464, 1404142047, 2364885369, 3880739170, 6220194750, 9759104355, 15015551265, 22693687380, 33738295500, 49402080000, 71327958156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,2 LINKS T. D. Noe, Table of n, a(n) for n = 6..1000 S. Butler, P. Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, page 5. Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). FORMULA a(n) = Stirling2(n+6, n) with Stirling2(n, m)=A048993(n, m). a(n)= A008278(n+5, 6). a(n) = sum(A008517(5, m+1)*binomial(n+5-m, 2*5), m=0..4) from the o.g.f. See p. 257 eq. (6.43) of the R . L. Graham et al. book quoted in A008517. O.g.f.: x*sum(A008517(5, m+1)*x^m, m=0..4)/(1-x)^11 with the fifth row [1, 52, 328, 444, 120] of the second-order Eulerian triangle A008517. E.g.f. with offset n=-4: exp(x)*sum(A112493(5, m)*(x^(m+5))/(m+5)!, m=0..5) with the k=5 row [1, 57, 546, 1750, 2205, 945] of triangle A112493. a(n) = sum(A112493(5, m)*binomial(n+4, 5+m), m=0..5) from the e.g.f. (coefficients from A112493(5, m) are [1, 57, 546, 1750, 2205, 945]). With an offset of 1 the o.g.f. is D^5(x/(1-x)), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012 G.f.: x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11. - Colin Barker, Nov 04 2017 MATHEMATICA Table[StirlingS2[n, n-5], {n, 6, 100}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *) PROG (Sage) [stirling_number2(n, n-5) for n in range(6, 30)] # Zerinvary Lajos, May 16 2009 (PARI) for(n=6, 50, print1(stirling(n, n-5, 2), ", ")) \\ G. C. Greubel, Oct 22 2017 (PARI) Vec(x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11 + O(x^40)) \\ Colin Barker, Nov 04 2017 CROSSREFS Cf. A008517, A112493. Cf. A001298 (fifth diagonal, resp. column). Sequence in context: A201886 A232794 A091027 * A258004 A258014 A183076 Adjacent sequences:  A112491 A112492 A112493 * A112495 A112496 A112497 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 00:46 EDT 2021. Contains 346493 sequences. (Running on oeis4.)