login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220822
Number of rooted binary leaf-multilabeled trees with n leaves on the label set [5].
2
0, 0, 0, 0, 105, 2625, 42075, 554820, 6578550, 73169250, 781319370, 8122058850, 82922497890, 836339477160, 8366154130425, 83235403604220, 825247074255735, 8165187992777430, 80704316324506860, 797435573602269015, 7881226621071221625, 77939438593071188565
OFFSET
1,5
LINKS
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
MAPLE
b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))
end:
a:= n-> (k-> add((-1)^i*binomial(k, i)*b(n, k-i), i=0..k))(5):
seq(a(n), n=1..30); # Alois P. Heinz, Sep 07 2019
MATHEMATICA
b[n_, k_] := b[n, k] = If[n < 2, k n, If[OddQ[n], 0, Function[t, t (1 - t)/2][b[n/2, k]]] + Sum[b[i, k] b[n - i, k], {i, 1, n/2}]];
a[n_] := Function[k, Sum[(-1)^i Binomial[k, i] b[n, k - i], {i, 0, k}]][5];
Array[a, 30] (* Jean-François Alcover, Apr 08 2020, after Alois P. Heinz *)
CROSSREFS
Column 5 of A319541.
Sequence in context: A024198 A027788 A112497 * A166821 A166803 A262075
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 22 2012
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018
STATUS
approved