login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220819 Number of rooted binary leaf-multilabeled trees with n leaves on the label set [2]. 2
0, 1, 4, 14, 48, 171, 614, 2270, 8518, 32567, 126168, 495079, 1962752, 7853581, 31672502, 128622480, 525523990, 2158818376, 8911039462, 36941520279, 153740822408, 642085403709, 2690217364606, 11304538078369, 47630350694248, 201181246749072, 851690546714230 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1542 (first 200 terms from Andrew Howroyd)

V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.

FORMULA

a(n) = A083563(n) - 2*A001190(n). - Andrew Howroyd, Sep 23 2018

MAPLE

b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,

      (t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))

    end:

a:= n-> b(n, 2)-2*b(n, 1):

seq(a(n), n=1..40);  # Alois P. Heinz, Sep 07 2019

MATHEMATICA

(* b = A083563 *) b[n_] := b[n] = If[n < 2, 2*n, If[OddQ[n], 0, #*(1 - #)/2 &[b[n/2]]]] + Sum[b[i]*b[n - i], {i, 1, n/2}];

(* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, (n - 1)/2}]; c[n_?EvenQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, n/2 - 1}] + (1/2)*c[n/2]*(1 + c[n/2]); c[0] = 0; c[1] = 1;

a[n_] := b[n] - 2 c[n];

Array[a, 27] (* Jean-Fran├žois Alcover, Sep 07 2019 *)

CROSSREFS

Column k=2 of A319541.

Cf. A001190, A083563.

Sequence in context: A007851 A014325 A047028 * A047138 A111299 A245824

Adjacent sequences:  A220816 A220817 A220818 * A220820 A220821 A220822

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 22 2012

EXTENSIONS

Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)