login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220819
Number of rooted binary leaf-multilabeled trees with n leaves on the label set [2].
2
0, 1, 4, 14, 48, 171, 614, 2270, 8518, 32567, 126168, 495079, 1962752, 7853581, 31672502, 128622480, 525523990, 2158818376, 8911039462, 36941520279, 153740822408, 642085403709, 2690217364606, 11304538078369, 47630350694248, 201181246749072, 851690546714230
OFFSET
1,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1542 (first 200 terms from Andrew Howroyd)
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
FORMULA
a(n) = A083563(n) - 2*A001190(n). - Andrew Howroyd, Sep 23 2018
MAPLE
b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))
end:
a:= n-> b(n, 2)-2*b(n, 1):
seq(a(n), n=1..40); # Alois P. Heinz, Sep 07 2019
MATHEMATICA
(* b = A083563 *) b[n_] := b[n] = If[n < 2, 2*n, If[OddQ[n], 0, #*(1 - #)/2 &[b[n/2]]]] + Sum[b[i]*b[n - i], {i, 1, n/2}];
(* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, (n - 1)/2}]; c[n_?EvenQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, n/2 - 1}] + (1/2)*c[n/2]*(1 + c[n/2]); c[0] = 0; c[1] = 1;
a[n_] := b[n] - 2 c[n];
Array[a, 27] (* Jean-François Alcover, Sep 07 2019 *)
CROSSREFS
Column k=2 of A319541.
Sequence in context: A368555 A014325 A047028 * A047138 A363468 A111299
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 22 2012
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018
STATUS
approved