This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220819 Number of rooted binary leaf-multilabeled trees with n leaves on the label set [2]. 2
 0, 1, 4, 14, 48, 171, 614, 2270, 8518, 32567, 126168, 495079, 1962752, 7853581, 31672502, 128622480, 525523990, 2158818376, 8911039462, 36941520279, 153740822408, 642085403709, 2690217364606, 11304538078369, 47630350694248, 201181246749072, 851690546714230 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1542 (first 200 terms from Andrew Howroyd) V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. FORMULA a(n) = A083563(n) - 2*A001190(n). - Andrew Howroyd, Sep 23 2018 MAPLE b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,       (t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))     end: a:= n-> b(n, 2)-2*b(n, 1): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 07 2019 MATHEMATICA (* b = A083563 *) b[n_] := b[n] = If[n < 2, 2*n, If[OddQ[n], 0, #*(1 - #)/2 &[b[n/2]]]] + Sum[b[i]*b[n - i], {i, 1, n/2}]; (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, (n - 1)/2}]; c[n_?EvenQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, n/2 - 1}] + (1/2)*c[n/2]*(1 + c[n/2]); c[0] = 0; c[1] = 1; a[n_] := b[n] - 2 c[n]; Array[a, 27] (* Jean-François Alcover, Sep 07 2019 *) CROSSREFS Column k=2 of A319541. Cf. A001190, A083563. Sequence in context: A007851 A014325 A047028 * A047138 A111299 A245824 Adjacent sequences:  A220816 A220817 A220818 * A220820 A220821 A220822 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 22 2012 EXTENSIONS Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)