OFFSET
1,1
COMMENTS
This sequence should probably start with 1. Then a number k is in the sequence iff k = 1 or k = prime(x) * prime(y) with x and y already in the sequence. - Gus Wiseman, May 04 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..186
Keith Briggs, Matula numbers and rooted trees
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node
EXAMPLE
From Gus Wiseman, May 04 2021: (Start)
The sequence of trees (starting with 1) begins:
1: o
4: (oo)
14: (o(oo))
49: ((oo)(oo))
86: (o(o(oo)))
301: ((oo)(o(oo)))
454: (o((oo)(oo)))
886: (o(o(o(oo))))
1589: ((oo)((oo)(oo)))
1849: ((o(oo))(o(oo)))
3101: ((oo)(o(o(oo))))
3986: (o((oo)(o(oo))))
6418: (o(o((oo)(oo))))
9761: ((o(oo))((oo)(oo)))
(End)
MATHEMATICA
nn=20000;
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
binQ[n_]:=Or[n===1, With[{m=primeMS[n]}, And[Length[m]===2, And@@binQ/@m]]];
Select[Range[2, nn], binQ] (* Gus Wiseman, Aug 28 2017 *)
PROG
(PARI) i(n)=n==2 || is(primepi(n))
is(n)=if(n<14, return(n==4)); my(f=factor(n), t=#f[, 1]); if(t>1, t==2 && f[1, 2]==1 && f[2, 2]==1 && i(f[1, 1]) && i(f[2, 1]), f[1, 2]==2 && i(f[1, 1])) \\ Charles R Greathouse IV, Mar 29 2013
(PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Keith Briggs, Nov 02 2005
EXTENSIONS
Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013
STATUS
approved