OFFSET
1,2
COMMENTS
First differs from A331683 in having 133, the Matula-Goebel number of the tree ((oo)(ooo)).
Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, and all composite numbers that are n times a power of two, where n is a squarefree number whose prime indices already belong to the sequence, and a prime index of n is a number m such that prime(m) divides n. [Clarified by Peter Munn and Gus Wiseman, Jun 24 2021]
LINKS
EXAMPLE
The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
1: o
4: (oo)
8: (ooo)
14: (o(oo))
16: (oooo)
28: (oo(oo))
32: (ooooo)
38: (o(ooo))
56: (ooo(oo))
64: (oooooo)
76: (oo(ooo))
86: (o(o(oo)))
106: (o(oooo))
112: (oooo(oo))
128: (ooooooo)
133: ((oo)(ooo))
152: (ooo(ooo))
172: (oo(o(oo)))
212: (oo(oooo))
214: (o(oo(oo)))
The sequence of terms together with their prime indices begins:
1: {} 224: {1,1,1,1,1,4}
4: {1,1} 256: {1,1,1,1,1,1,1,1}
8: {1,1,1} 262: {1,32}
14: {1,4} 266: {1,4,8}
16: {1,1,1,1} 301: {4,14}
28: {1,1,4} 304: {1,1,1,1,8}
32: {1,1,1,1,1} 326: {1,38}
38: {1,8} 344: {1,1,1,14}
56: {1,1,1,4} 371: {4,16}
64: {1,1,1,1,1,1} 424: {1,1,1,16}
76: {1,1,8} 428: {1,1,28}
86: {1,14} 448: {1,1,1,1,1,1,4}
106: {1,16} 512: {1,1,1,1,1,1,1,1,1}
112: {1,1,1,1,4} 524: {1,1,32}
128: {1,1,1,1,1,1,1} 526: {1,56}
133: {4,8} 532: {1,1,4,8}
152: {1,1,1,8} 602: {1,4,14}
172: {1,1,14} 608: {1,1,1,1,1,8}
212: {1,1,16} 622: {1,64}
214: {1,28} 652: {1,1,38}
MATHEMATICA
csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n], {_?(#>2&), _?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n];
Select[Range[100], csiQ]
CROSSREFS
The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2020
STATUS
approved