OFFSET
1,8
COMMENTS
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. It is an identity tree if the branches of any given vertex are all distinct.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
EXAMPLE
The a(9) = 2 through a(12) = 10 semi-lone-child-avoiding rooted identity trees:
((o)(o(o(o)))) (o(o)(o(o(o)))) ((o)(o(o)(o(o)))) (o(o)(o(o)(o(o))))
(o((o)(o(o)))) (o(o(o)(o(o)))) ((o)(o(o(o(o))))) (o(o)(o(o(o(o)))))
(o(o(o(o(o))))) ((o(o))(o(o(o)))) (o(o(o))(o(o(o))))
((o)((o)(o(o)))) (o((o)(o(o(o))))) (o(o(o)(o(o(o)))))
(o(o)((o)(o(o)))) (o(o(o(o)(o(o)))))
(o(o((o)(o(o))))) (o(o(o(o(o(o))))))
((o)((o)(o(o(o)))))
((o)(o((o)(o(o)))))
((o(o))((o)(o(o))))
(o((o)((o)(o(o)))))
MATHEMATICA
ssei[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Select[Union[Sort/@Tuples[ssei/@c]], UnsameQ@@#&]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[ssei[n]], {n, 15}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1, 1]); for(n=2, n-1, v=concat(v, WeighT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2020
EXTENSIONS
Terms a(36) and beyond from Andrew Howroyd, Feb 09 2020
STATUS
approved