OFFSET
1,4
COMMENTS
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
FORMULA
Product_{k > 0} 1/(1 - x^k)^a(k) = A(x) + A(x)/x - x where A(x) = Sum_{k > 0} x^k a(k).
Euler transform is b(1) = 1, b(n > 1) = a(n) + a(n + 1).
EXAMPLE
The a(1) = 1 through a(7) = 15 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
((o)(o)) (ooo(o)) (ooo(oo))
((o)(oo)) (oooo(o))
(o(o)(o)) ((o)(ooo))
(o(o(o))) ((oo)(oo))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o)(o))
(oo(o(o)))
((o)(o)(o))
((o)(o(o)))
(o((o)(o)))
MATHEMATICA
sse[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Union[Sort/@Tuples[sse/@c]]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sse[n]], {n, 10}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1, 1]); for(n=2, n-1, v=concat(v, EulerT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
The same trees counted by leaves are A050381.
The locally disjoint version is A331872.
Matula-Goebel numbers of these trees are A331935.
Lone-child-avoiding rooted trees are A001678.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 03 2020
EXTENSIONS
Terms a(25) and beyond from Andrew Howroyd, Feb 09 2020
STATUS
approved