login
A331934
Number of semi-lone-child-avoiding rooted trees with n unlabeled vertices.
19
1, 1, 1, 2, 4, 7, 15, 29, 62, 129, 279, 602, 1326, 2928, 6544, 14692, 33233, 75512, 172506, 395633, 911108, 2105261, 4880535, 11346694, 26451357, 61813588, 144781303, 339820852, 799168292, 1882845298, 4443543279, 10503486112, 24864797324, 58944602767, 139918663784
OFFSET
1,4
COMMENTS
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
FORMULA
Product_{k > 0} 1/(1 - x^k)^a(k) = A(x) + A(x)/x - x where A(x) = Sum_{k > 0} x^k a(k).
Euler transform is b(1) = 1, b(n > 1) = a(n) + a(n + 1).
EXAMPLE
The a(1) = 1 through a(7) = 15 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
((o)(o)) (ooo(o)) (ooo(oo))
((o)(oo)) (oooo(o))
(o(o)(o)) ((o)(ooo))
(o(o(o))) ((oo)(oo))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o)(o))
(oo(o(o)))
((o)(o)(o))
((o)(o(o)))
(o((o)(o)))
MATHEMATICA
sse[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Union[Sort/@Tuples[sse/@c]]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sse[n]], {n, 10}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1, 1]); for(n=2, n-1, v=concat(v, EulerT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
The same trees counted by leaves are A050381.
The locally disjoint version is A331872.
Matula-Goebel numbers of these trees are A331935.
Lone-child-avoiding rooted trees are A001678.
Sequence in context: A232394 A356626 A115178 * A049885 A129682 A129981
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 03 2020
EXTENSIONS
Terms a(25) and beyond from Andrew Howroyd, Feb 09 2020
STATUS
approved