login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330951
Number of singleton-reduced unlabeled rooted trees with n nodes.
9
1, 1, 1, 3, 5, 11, 24, 52, 119, 272, 635, 1499, 3577, 8614, 20903, 51076, 125565, 310302, 770536, 1921440, 4809851, 12081986, 30445041, 76938794, 194950040, 495174037, 1260576786, 3215772264, 8219437433, 21046602265, 53982543827, 138678541693, 356785641107
OFFSET
1,4
COMMENTS
A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.
LINKS
FORMULA
G.f.: A(x) satisfies A(x) = x + x*exp(Sum_{k>=1} A(x^k)/k) - x*exp(Sum_{k>=1} x^k*A(x^k)/(1 + x^k)/k). - Andrew Howroyd, Dec 10 2020
a(n) ~ c * d^n / n^(3/2), where d = 2.69474016697407303512228736537683134987637576... and c = 0.41800971384719166056172258174139385922545... - Vaclav Kotesovec, Nov 16 2021
EXAMPLE
The a(1) = 1 through a(6) = 11 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(oo(o)) (oo(oo))
((o(o))) (ooo(o))
((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
MATHEMATICA
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], FreeQ[#, q:{__List}/; Times@@Length/@q==1]&]], {n, 10}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ Andrew Howroyd, Dec 10 2020
CROSSREFS
The Matula-Goebel numbers of these trees are given by A330943.
The series-reduced case is A001678.
Unlabeled rooted trees are counted by A000081.
Singleton-reduced phylogenetic trees are A000311.
Sequence in context: A074874 A051439 A214873 * A018116 A259643 A167796
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2020
EXTENSIONS
Terms a(19) and beyond from Andrew Howroyd, Dec 10 2020
STATUS
approved