login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259643
Numbers n such that sum of first n odd primes divides product of first n odd primes.
1
1, 3, 5, 11, 25, 29, 41, 49, 51, 59, 69, 81, 99, 103, 113, 131, 133, 135, 147, 149, 153, 181, 187, 193, 197, 199, 205, 211, 213, 217, 219, 229, 235, 239, 243, 255, 271, 277, 281, 287, 289, 303, 309, 313, 323, 333, 335, 343, 347, 357, 359, 365, 367, 381, 383, 389
OFFSET
1,2
COMMENTS
Obviously, a(n) is always an odd number.
EXAMPLE
a(1) = 1 because prime(2) mod prime(2) = 3 mod 3 = 0.
a(2) = 3 because (prime(2) * prime(3) * prime(4)) mod (prime(2) + prime(3) + prime(4)) = 105 mod 15 = 0.
a(3) = 5 because (prime(2) * prime(3) * prime(4) * prime(5) * prime(6)) mod (prime(2) + prime(3) + prime(4) + prime(5) + prime(6)) = 15015 mod 39 = 0.
MATHEMATICA
Module[{nn=400, op}, op=Prime[Range[2, nn+1]]; Select[Range[nn], Divisible[ Times@@ Take[op, #], Total[Take[op, #]]]&]] (* Harvey P. Dale, Nov 16 2022 *)
PROG
for(n=1, 1e3, if( prod(k=1, n, prime(k+1)) % sum(k=1, n, prime(k+1)) == 0 , print1(n", ")))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Oct 02 2015
STATUS
approved