login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084202
G.f. A(x) defined by: A(x)^2 consists entirely of integer coefficients between 1 and 2 (A083952); A(x) is the unique power series solution with A(0)=1.
17
1, 1, 0, 1, 0, 1, -1, 2, -2, 4, -6, 10, -16, 27, -44, 75, -127, 218, -375, 650, -1130, 1974, -3460, 6086, -10736, 18993, -33685, 59882, -106683, 190446, -340611, 610243, -1095102, 1968200, -3542468, 6384518, -11521308, 20815942, -37651528, 68176596, -123574852, 224204708, -407153894
OFFSET
0,8
COMMENTS
Limit a(n)/a(n+1) -> r = -0.530852489019085 where A(r)=0.
Let A_n(x) be the power series formed from the first n terms of this sequence. Then a(0) = 1, a(n) = floor(1 - [x^n] (A_(n-1)(x))^2/2). Replacing 2 with a larger integer k generates the related sequences A084203-A084212. - Charlie Neder, Jan 16 2019
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
MATHEMATICA
a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[a[n], {n, 0, 42}]; CoefficientList[ Series[ Sqrt[ Sum[ a[i]*x^i, {i, 0, 42}]], {x, 0, 42}], x] (* Robert G. Wilson v, Nov 11 2007 *)
PROG
(PARI) /* Using Charlie Neder's formula */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = floor(1 - polcoeff( Ser(A)^2, #A-1)/2) ); A[n+1]}
for(n=0, 50, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 17 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 19 2003
STATUS
approved