The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084205 G.f. A(x) defined by: A(x)^5 consists entirely of integer coefficients between 1 and 5 (A083945); A(x) is the unique power series solution with A(0)=1. 3
 1, 1, -1, 3, -8, 24, -76, 252, -854, 2950, -10343, 36706, -131570, 475576, -1731357, 6342042, -23356185, 86421603, -321111661, 1197586539, -4481348585, 16819759474, -63302097780, 238835017492, -903165412289, 3422512973645, -12994514592311, 49425252955926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Limit a(n)/a(n+1) -> r = -0.2512525316047635 where A(r)=0. LINKS N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006. N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. MATHEMATICA kmax = 30; A[x_] = Sum[a[k] x^k, {k, 0, kmax}]; coes = CoefficientList[A[x]^5 + O[x]^(kmax + 1), x]; r = {a[0] -> 1, a[1] -> 1}; coes = coes /. r; Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 5, a[k-1], Integers] // ToRules]; coes = coes /. r, {k, 3, kmax+1}]; Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *) CROSSREFS Cf. A083945, A084202-A084204, A084206-A084212. Sequence in context: A000958 A148782 A148783 * A118099 A066350 A148784 Adjacent sequences:  A084202 A084203 A084204 * A084206 A084207 A084208 KEYWORD sign AUTHOR Paul D. Hanna, May 20 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 08:31 EST 2021. Contains 349437 sequences. (Running on oeis4.)