The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084206 G.f. A(x) defined by: A(x)^6 consists entirely of integer coefficients between 1 and 6 (A083946); A(x) is the unique power series solution with A(0)=1. 2
 1, 1, -2, 7, -27, 115, -510, 2343, -11029, 52896, -257457, 1268098, -6307546, 31633044, -159757597, 811708539, -4145882814, 21273287952, -109603172373, 566748274099, -2940175511195, 15297961574259, -79808998488751, 417373462315834 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Limit a(n)/a(n+1) -> r = -0.1815238859919 where A(r)=0. LINKS N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006. N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. MATHEMATICA kmax = 25; A[x_] = Sum[a[k] x^k, {k, 0, kmax}]; coes = CoefficientList[A[x]^6 + O[x]^(kmax + 1), x]; r = {a[0] -> 1, a[1] -> 1}; coes = coes /. r; Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 6, a[k-1], Integers] // ToRules]; coes = coes /. r, {k, 3, kmax + 1}]; Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *) CROSSREFS Cf. A083946, A084202-A084205, A084207-A084212. Sequence in context: A150634 A150635 A150636 * A150637 A150638 A150639 Adjacent sequences:  A084203 A084204 A084205 * A084207 A084208 A084209 KEYWORD sign AUTHOR Paul D. Hanna, May 20 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:24 EST 2020. Contains 338858 sequences. (Running on oeis4.)