|
|
A331993
|
|
Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices.
|
|
5
|
|
|
1, 1, 1, 2, 3, 6, 11, 22, 43, 90, 185, 393, 835, 1802, 3904, 8540, 18756, 41463, 92022, 205179, 459086, 1030917, 2321949, 5245104, 11878750, 26967957, 61359917, 139902251, 319591669, 731385621, 1676573854, 3849288924, 8850674950, 20378544752, 46982414535
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.
|
|
LINKS
|
|
|
EXAMPLE
|
The a(1) = 1 through a(7) = 11 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
((o)(oo)) (oooo(o))
(o(o(o))) ((o)(ooo))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o(o)))
((o)(o(o)))
|
|
MATHEMATICA
|
sssb[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Select[Union[Sort/@Tuples[sssb/@c]], UnsameQ@@DeleteCases[#, {}]&]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sssb[n]], {n, 10}]
|
|
PROG
|
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020
|
|
CROSSREFS
|
Not requiring any lone-child-avoidance gives A306200.
Matula-Goebel numbers of these trees are A331994.
Lone-child-avoiding rooted identity trees are A000007.
Semi-lone-child-avoiding rooted trees are A331934.
Semi-lone-child-avoiding rooted identity trees are A331964.
Lone-child-avoiding rooted semi-identity trees are A331966.
Cf. A001678, A004111, A300660, A316694, A331683, A331686, A331783, A331875, A331933, A331963, A331965.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|