login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331993
Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices.
5
1, 1, 1, 2, 3, 6, 11, 22, 43, 90, 185, 393, 835, 1802, 3904, 8540, 18756, 41463, 92022, 205179, 459086, 1030917, 2321949, 5245104, 11878750, 26967957, 61359917, 139902251, 319591669, 731385621, 1676573854, 3849288924, 8850674950, 20378544752, 46982414535
OFFSET
1,4
COMMENTS
Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.
LINKS
EXAMPLE
The a(1) = 1 through a(7) = 11 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
((o)(oo)) (oooo(o))
(o(o(o))) ((o)(ooo))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o(o)))
((o)(o(o)))
MATHEMATICA
sssb[n_]:=Switch[n, 1, {{}}, 2, {{{}}}, _, Join@@Function[c, Select[Union[Sort/@Tuples[sssb/@c]], UnsameQ@@DeleteCases[#, {}]&]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sssb[n]], {n, 10}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
Not requiring any lone-child-avoidance gives A306200.
The locally disjoint case is A324969 (essentially A000045).
Matula-Goebel numbers of these trees are A331994.
Lone-child-avoiding rooted identity trees are A000007.
Semi-lone-child-avoiding rooted trees are A331934.
Semi-lone-child-avoiding rooted identity trees are A331964.
Lone-child-avoiding rooted semi-identity trees are A331966.
Sequence in context: A026418 A063895 A337090 * A027214 A192652 A132831
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 05 2020
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Feb 09 2020
STATUS
approved