The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306202 Matula-Goebel numbers of rooted semi-identity trees. 12
 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 84, 85 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Definition: A positive integer belongs to the sequence iff its prime indices greater than 1 are distinct and already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. LINKS EXAMPLE The sequence of all unlabeled rooted semi-identity trees together with their Matula-Goebel numbers begins:    1: o    2: (o)    3: ((o))    4: (oo)    5: (((o)))    6: (o(o))    7: ((oo))    8: (ooo)   10: (o((o)))   11: ((((o))))   12: (oo(o))   13: ((o(o)))   14: (o(oo))   15: ((o)((o)))   16: (oooo)   17: (((oo)))   19: ((ooo))   20: (oo((o)))   21: ((o)(oo))   22: (o(((o))))   24: (ooo(o))   26: (o(o(o)))   28: (oo(oo))   29: ((o((o))))   30: (o(o)((o))) MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n], 1], And@@psidQ/@primeMS[n]]; Select[Range[100], psidQ] CROSSREFS Cf. A000081, A004111, A007097, A276625, A277098, A306200, A306201, A316467. Sequence in context: A122132 A325389 A020662 * A328335 A302569 A235034 Adjacent sequences:  A306199 A306200 A306201 * A306203 A306204 A306205 KEYWORD nonn AUTHOR Gus Wiseman, Jan 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 22:11 EDT 2020. Contains 334756 sequences. (Running on oeis4.)