OFFSET
1,2
COMMENTS
This is equal to Product_{q>=1} (1-1/2^q)^(-1) over all q with 2^q - 1 a Mersenne prime.
LINKS
Tomohiro Yamada, Table of n, a(n) for n = 1..99
Tomohiro Yamada, Unitary super perfect numbers, Mathematica Pannonica, Volume 19, No. 1, 2008, pp. 37-47, using this constant with only a rough upper bound (4/3)*exp(4/21) < 1.6131008.
FORMULA
Equals Sum_{n>=1} 1/A046528(n). - Amiram Eldar, Jan 06 2021
EXAMPLE
Decimal expansion of (4/3) * (8/7) * (32/31) * (128/127) * (8192/8191) * (131072/131071) * (524288/524287) * ... = 1.585558887...
PROG
(PARI) t=1.0; for(i=1, 500, p=2^i-1; if(isprime(p), t=t*(p+1)/p))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Tomohiro Yamada, Jan 29 2019
STATUS
approved