|
|
A065446
|
|
Decimal expansion of Product_{k>=1} (1-1/2^k)^(-1).
|
|
21
|
|
|
3, 4, 6, 2, 7, 4, 6, 6, 1, 9, 4, 5, 5, 0, 6, 3, 6, 1, 1, 5, 3, 7, 9, 5, 7, 3, 4, 2, 9, 2, 4, 4, 3, 1, 1, 6, 4, 5, 4, 0, 7, 5, 7, 9, 0, 2, 9, 0, 4, 4, 3, 8, 3, 9, 1, 3, 2, 9, 3, 5, 3, 0, 3, 1, 7, 5, 8, 9, 1, 5, 4, 3, 9, 7, 4, 0, 4, 2, 0, 6, 4, 5, 6, 8, 7, 9, 2, 7, 7, 4, 0, 2, 9, 4, 8, 4, 3, 3, 5, 3, 5, 0, 8, 8, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
|
|
LINKS
|
|
|
FORMULA
|
Equals 1/QPochhammer(1/2, 1/2)_{infinity}. - G. C. Greubel, Jan 18 2018
Equals 1 + Sum_{n>=1} 2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). - Robert FERREOL, Feb 22 2020
|
|
EXAMPLE
|
3.46274661945506361153795734292443116454075790290...
|
|
MAPLE
|
evalf(1+sum(2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 22 2020
|
|
MATHEMATICA
|
N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ]
RealDigits[1/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vaclav Kotesovec, Jun 22 2014 *)
|
|
PROG
|
(PARI) { default(realprecision, 2080); x=prodinf(k=1, 1/(1 - 1/2^k)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065446.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|