OFFSET
1,2
COMMENTS
First differs from A302569 in having 105, which has prime indices {2, 3, 4}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose consecutive parts are relatively prime (A328172).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
8: {1,1,1}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
22: {1,5}
23: {9}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !MatchQ[primeMS[#], {___, x_, y_, ___}/; GCD[x, y]>1]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2019
STATUS
approved