

A196050


Number of edges in the rooted tree with MatulaGoebel number n.


84



0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 6, 5, 5, 6, 6, 5, 6, 5, 6, 7, 6, 6, 6, 6, 7, 6, 6, 5, 7, 7, 6, 6, 6, 5, 7, 6, 6, 7, 6, 7, 7, 5, 6, 7, 7, 6, 7, 6, 6, 8, 6, 7, 7, 6, 7, 8, 6, 6, 7, 7, 6, 7, 7, 6, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 6, 7, 7, 7, 8, 6, 6, 8, 6, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The MatulaGoebel number of a rooted tree is defined in the following recursive manner: to the onevertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the tth prime number, where t is the MatulaGoebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the MatulaGoebel numbers of the m branches of T.
a(n) is, for n >= 2, the number of prime function prime(.) = A000040(.) operations in the complete reduction of n. See the W. Lang link with a list of the reductions for n = 2..100, where a curly bracket notation {.} is used for prime(.).  Wolfdieter Lang, Apr 03 2018
Every positive integer has a unique factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
In this factorization, a(n) is the number of factors counted with multiplicity. For example, a(11) = 4, a(50) = 7, a(360) = 10.
(End)
Totally additive with a(prime(n)) = 1 + a(n).
Number of iterations of A366385 (or equally, of A366387) needed to reach 1.
(End)


LINKS



FORMULA

a(1)=0; if n = prime(t) (the tth prime), then a(n)=1 + a(t); if n = r*s (r,s>=2), then a(n)=a(r)+a(s). The Maple program is based on this recursive formula.


EXAMPLE

a(7) = 3 because the rooted tree with MatulaGoebel number 7 is the rooted tree Y.
a(2^m) = m because the rooted tree with MatulaGoebel number 2^m is the star tree with m edges.


MAPLE

with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then 1+a(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);


MATHEMATICA

a[1] = 0; a[n_?PrimeQ] := a[n] = 1 + a[PrimePi[n]]; a[n_] := Total[#[[2]] * a[#[[1]] ]& /@ FactorInteger[n]];
difac[n_]:=If[n==1, {}, With[{i=PrimePi[FactorInteger[n][[1, 1]]]}, Sort[Prepend[difac[n*i/Prime[i]], i]]]];
Table[Length[difac[n]], {n, 100}] (* Gus Wiseman, Mar 23 2019 *)


PROG

(Haskell)
import Data.List (genericIndex)
a196050 n = genericIndex a196050_list (n  1)
a196050_list = 0 : g 2 where
g x = y : g (x + 1) where
y = if t > 0 then a196050 t + 1 else a196050 r + a196050 s
where t = a049084 x; r = a020639 x; s = x `div` r
(PARI) a(n) = my(f=factor(n)); [self()(primepi(p))+1 p<f[, 1]]*f[, 2]; \\ Kevin Ryde, May 28 2021
(Python)
from functools import lru_cache
from sympy import isprime, primepi, factorint
@lru_cache(maxsize=None)
if n == 1 : return 0
if isprime(n): return 1+A196050(primepi(n))


CROSSREFS

Cf. A000040, A000081, A000720, A003963, A007097, A020639, A049084, A109082, A109129, A317713, A318995, A358729.


KEYWORD

nonn


AUTHOR



STATUS

approved



