login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109082
Depth of rooted tree having Matula-Goebel number n.
57
0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 1, 3, 2, 2, 3, 2, 4, 3, 2, 3, 3, 2, 2, 4, 3, 5, 1, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 4, 2, 2, 3, 3, 3, 2, 2, 4, 2, 2, 4, 4, 3, 3, 5, 2, 1, 3, 4, 3, 3, 3, 3, 4, 2, 3, 3, 3, 2, 4, 3, 5, 3, 2, 4, 4, 2, 3, 3, 4, 4, 3, 3, 3, 3, 5, 4, 3, 2, 4, 2, 4, 3
OFFSET
1,3
COMMENTS
Another term for depth is height.
Starting with n, a(n) is the number of times one must take the product of prime indices (A003963) to reach 1. - Gus Wiseman, Mar 27 2019
LINKS
François Marques, Table of n, a(n) for n = 1..10000 (terms 1..5381 from Alois P. Heinz).
Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
a(1)=0; if n is the t-th prime, then a(n) = 1 + a(t); if n is composite, n=t*s, then a(n) = max(a(t),a(s)). The Maple program is based on this.
a(A007097(n)) = n.
a(n) = A358552(n) - 1. - Gus Wiseman, Nov 27 2022
EXAMPLE
a(7) = 2 because the rooted tree with Matula-Goebel number 7 is the 3-edge rooted tree Y of height 2.
MAPLE
with(numtheory): a := proc(n) option remember; if n = 1 then 0 elif isprime(n) then 1+a(pi(n)) else max((map (p->a(p), factorset(n)))[]) end if end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, Sep 16 2011
MATHEMATICA
a [n_] := a[n] = If[n == 1, 0, If[PrimeQ[n], 1+a[PrimePi[n]], Max[Map[a, FactorInteger[n][[All, 1]]]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 06 2014, after Emeric Deutsch *)
PROG
(PARI) a(n) = my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); d; \\ Kevin Ryde, Sep 21 2020
(Python)
from functools import lru_cache
from sympy import isprime, primepi, primefactors
@lru_cache(maxsize=None)
def A109082(n):
if n == 1 : return 0
if isprime(n): return 1+A109082(primepi(n))
return max(A109082(p) for p in primefactors(n)) # Chai Wah Wu, Mar 19 2022
CROSSREFS
A left inverse of A007097.
Cf. A000081, A000720, A001222, A109129, A112798, A196050, A290822, A317713, A320325, A324927 (positions of 2), A324928 (positions of 3), A325032.
This statistic is counted by A034781, ordered A080936.
The ordered version is A358379.
For node-height instead of edge-height we have A358552.
Sequence in context: A358553 A303639 A090000 * A324923 A126303 A306467
KEYWORD
nonn
AUTHOR
Keith Briggs, Aug 17 2005
EXTENSIONS
Edited by Emeric Deutsch, Sep 16 2011
STATUS
approved