login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306467
Let S(n)_k be the smallest positive integer t that t!k is a multiple of n (t!k is k-tuple factorial of t); then a(n) is the smallest k for which S(n)_k = n.
0
1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 3, 5, 1, 4, 1, 5, 3, 2, 1, 9, 4, 2, 7, 7, 1, 6, 1, 9, 3, 2, 5, 13, 1, 2, 3, 15, 1, 6, 1, 11, 10, 2, 1, 15, 6, 8, 3, 13, 1, 14, 5, 21, 3, 2, 1, 15, 1, 2, 14, 17, 5, 6, 1, 17, 3, 10, 1, 35, 1, 2, 12, 19, 7, 6, 1, 25
OFFSET
1,6
COMMENTS
If p is prime, a(p) = 1.
Conjecture: consecutive primes p satisfying the equation a(p+1) = 2 are consecutive elements of A005383 (primes p such that (p+1)/2 are also primes, for p > 3). The conjecture was checked for all primes < 10^4.
Conjecture: consecutive primes p satisfying the equations a(p+1) = 2 and a(p+2) = 3 are consecutive elements of A036570 (primes p such that (p+1)/2 and (p+2)/3 are also primes). The conjecture was checked for all primes < 10^4.
The first six solutions of the equation a(n) = a(n+1) are 1, 2, 3, 4, 9, 27. Is there a larger n? If such a number n exists, it is larger than 4000.
LINKS
EXAMPLE
a(8) = 3 because:
- for k = 1 is: 1!1, 2!1, 3!1 are not multiples of 8 and 4!1 is a multiple of 8, then (t = 4 = S(8)_1) <> (n = 8);
- for k = 2 is: 1!2, 2!2, 3!2 are not multiples of 8 and 4!2 is a multiple of 8, then (t = 4 = S(8)_2) <> (n = 8);
- for k = 3 is: 1!3, 2!3, 3!3, 4!3, 5!3, 6!3, 7!3 are not multiples of 8 and 8!3 is a multiple of 8, then (t = 8 = S(8)_3) = (n = 8), hence a(8) = k = 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Lechoslaw Ratajczak, Feb 17 2019
STATUS
approved