|
|
A303639
|
|
Number of ways to write n as a^2 + b^2 + binomial(2*c+1,c) + binomial(2*d+1,d), where a,b,c,d are nonnegative integers with a <= b and c <= d.
|
|
18
|
|
|
0, 1, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 3, 4, 2, 2, 2, 3, 4, 4, 5, 2, 4, 1, 2, 3, 3, 5, 3, 5, 1, 3, 1, 1, 6, 3, 8, 3, 6, 2, 4, 4, 2, 7, 5, 6, 2, 5, 2, 4, 5, 4, 8, 4, 7, 2, 4, 1, 3, 6, 4, 7, 3, 5, 2, 4, 2, 4, 9, 5, 6, 2, 6, 4, 5, 4, 7, 5, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Conjecture: a(n) > 0 for all n > 1.
This is similar to the author's conjecture in A303540.
It has been verified that a(n) > 0 for all n = 2..6*10^8.
|
|
LINKS
|
|
|
EXAMPLE
|
a(9) = 1 with 9 = 1^2 + 2^2 + binomial(2*0+1,0) + binomial(2*1+1,1).
a(2530) = 1 with 2530 = 0^2 + 49^2 + binomial(2*1+1,1) + binomial(2*4+1,4).
a(3258) = 1 with 3258 = 22^2 + 52^2 + binomial(2*3+1,3) + binomial(2*3+1,3).
a(5300) = 1 with 5300 = 10^2 + 59^2 + binomial(2*1+1,1) + binomial(2*6+1,6).
a(13453) = 1 with 13453 = 51^2 + 104^2 + binomial(2*0+1,0) + binomial(2*3+1,3).
a(20964) = 1 with 20964 = 13^2 + 138^2 + binomial(2*3+1,3) + binomial(2*6+1,6).
|
|
MATHEMATICA
|
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
c[n_]:=c[n]=Binomial[2n+1, n];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; k=0; Label[bb]; If[c[k]>n, Goto[aa]]; Do[If[QQ[n-c[k]-c[j]], Do[If[SQ[n-c[k]-c[j]-x^2], r=r+1], {x, 0, Sqrt[(n-c[k]-c[j])/2]}]], {j, 0, k}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
|
|
CROSSREFS
|
Cf. A000290, A001481, A001700, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|