login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303639 Number of ways to write n as a^2 + b^2 + binomial(2*c+1,c) + binomial(2*d+1,d), where a,b,c,d are nonnegative integers with a <= b and c <= d. 18
0, 1, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 3, 4, 2, 2, 2, 3, 4, 4, 5, 2, 4, 1, 2, 3, 3, 5, 3, 5, 1, 3, 1, 1, 6, 3, 8, 3, 6, 2, 4, 4, 2, 7, 5, 6, 2, 5, 2, 4, 5, 4, 8, 4, 7, 2, 4, 1, 3, 6, 4, 7, 3, 5, 2, 4, 2, 4, 9, 5, 6, 2, 6, 4, 5, 4, 7, 5, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
This is similar to the author's conjecture in A303540.
It has been verified that a(n) > 0 for all n = 2..6*10^8.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(9) = 1 with 9 = 1^2 + 2^2 + binomial(2*0+1,0) + binomial(2*1+1,1).
a(2530) = 1 with 2530 = 0^2 + 49^2 + binomial(2*1+1,1) + binomial(2*4+1,4).
a(3258) = 1 with 3258 = 22^2 + 52^2 + binomial(2*3+1,3) + binomial(2*3+1,3).
a(5300) = 1 with 5300 = 10^2 + 59^2 + binomial(2*1+1,1) + binomial(2*6+1,6).
a(13453) = 1 with 13453 = 51^2 + 104^2 + binomial(2*0+1,0) + binomial(2*3+1,3).
a(20964) = 1 with 20964 = 13^2 + 138^2 + binomial(2*3+1,3) + binomial(2*6+1,6).
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
c[n_]:=c[n]=Binomial[2n+1, n];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; k=0; Label[bb]; If[c[k]>n, Goto[aa]]; Do[If[QQ[n-c[k]-c[j]], Do[If[SQ[n-c[k]-c[j]-x^2], r=r+1], {x, 0, Sqrt[(n-c[k]-c[j])/2]}]], {j, 0, k}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
CROSSREFS
Sequence in context: A096857 A358379 A358553 * A090000 A109082 A324923
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 27 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 08:36 EDT 2024. Contains 375997 sequences. (Running on oeis4.)