|
|
A303640
|
|
a(n) is the least k > n such that A007504(n) divides A007504(k).
|
|
1
|
|
|
3, 3, 9, 13, 33, 15, 121, 84, 103, 26, 259, 295, 433, 71, 111, 331, 317, 366, 649, 80, 283, 274, 429, 4542, 3071, 2138, 4241, 74, 761, 3083, 103, 1847, 1683, 3886, 1233, 470, 2359, 1182, 1797, 3431, 2037, 1767, 7543, 9106, 1867, 656, 5469, 6012, 12245, 2225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Credit is given for Zak Seidov for doing the calculations.
|
|
LINKS
|
|
|
EXAMPLE
|
|
|
MAPLE
|
N:= 10^5: # to get all terms before the first term > N
A007504:= ListTools:-PartialSums([seq(ithprime(i), i=1..N)]):
found:= true:
for n from 1 while found do
found:= false;
for k from n+1 to N do
found:= true;
A[n]:= k;
break
fi
od
od:
|
|
MATHEMATICA
|
a[n_] := For[tpn = Prime[Range[n]] // Total; tpk = 0; k = n+1, True, k++, tpk += Prime[k]; If[Divisible[tpk, tpn], Return[k]]]; Array[a, 50] (* Jean-François Alcover, Mar 22 2019 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|